
ns-3 Direct Code Execution (DCE)
Manual

Release 1.12

Direct Code Execution project

Jun 24, 2023

Contents

1 Introduction 3

2 Quick Start 7

3 User’s Guide 15

4 Developer’s Guide 49

5 How It Works 65

6 Subprojects of DCE 73

7 About 75

i

ii

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

This is the manual of Direct Code Execution (DCE).

• Doxygen: Documentation of the public APIs of the DCE

• Manual (this document) for the latest release and development tree

This document is written in reStructuredText for Sphinx and is maintained in the doc/ directory of ns-3-dce’s source
code.

Contents 1

http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org/

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

2 Contents

CHAPTER 1

Introduction

1.1 Overview

Direct Code Execution (DCE) is a module for ns-3 that provides facilities to execute, within ns-3, existing implemen-
tations of userspace and kernelspace network protocols or applications without source code changes. For example
instead of using the pseudo application provided by ns-3 V4PingHelper you can use the true ping.

If you wish to cite DCE in your academic work, please reference this paper.

1.2 Maintainers

DCE is maintained by Hajime Tazaki, Matthieu Coudron, Tom Henderson, and Parth Pratim Chatterjee.

1.3 Manual Structure

This document consists of the following parts:

0. Quick Start: The document describes a quick instruction of DCE.

1. User’s Guide: The document is for people who will use DCE to experiment.

1.4 DCE Outlook

• To run an application using DCE, it is usually not necessary to change its sources. However you will need to
recompile them.

• The simulation is executed wholly within a single process which greatly facilitates the debugging.

• DCE is very memory-efficient, thanks to the way it loads the executables similarly to shared libraries.

3

https://www.nsnam.org/
https://dl.acm.org/doi/abs/10.1145/2535372.2535374
https://github.com/thehajime
https://github.com/teto
https://github.com/tomhenderson
https://github.com/ParthPratim

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

1.5 Supported Features

• Simulation with POSIX socket application (no manual modifications)

• C/C++ applications; applications written in other languages (Python, Java, etc.) are not presently supported.

• Simulation with selected versions of the Linux kernel (network and transport layers)

• IPv4/IPv6

• TCP/UDP/DCCP

• running with POSIX socket applications and ns-3 socket applications

• configuration via sysctl-like interface

• multiple nodes debugging with single gdb interface

• memory analysis by single valgrind execution with multiple nodes

• Variations of network stacks

• ns-3 native stack (IPv4/IPv6, partially)

• Network simulation cradle network stack (IPv4 TCP only)

• Linux network stack (IPv4/IPv6/others)

• Per-node configuration/stdin input

• Per-node syslog/stdout/stderr files output

1.6 Tested Applications

• CCNx

• Quagga

• iperf

• ping/ping6

• ip (iproute2 package)

• Mobile IPv6 daemon (umip)

• Linux kernel (from 2.6.36 to 3.7 versions)

• http server (thttpd)

• torrent (libtorrent from rasterbar + opentracker)

1.7 Tested Environment

Currently, DCE only supports Linux-based operating systems.

DCE version 1.12 has been tested only on the following distribution:

• Ubuntu 20.04

DCE version 1.11 has been tested only on the following distribution:

• Ubuntu 16.04

4 Chapter 1. Introduction

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

Newer Linux distributions (based on newer libc) require different support and are not presently supported but are under
development.

If you find that you can run on another distribution, please let the Maintainers know. Also, if you would like to work
on getting DCE to work on newer systems, please let the Maintainers know.

1.8 Roadmap

The DCE roadmap is maintained here.

1.8. Roadmap 5

https://github.com/direct-code-execution/ns-3-dce/wiki/Roadmap

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

6 Chapter 1. Introduction

CHAPTER 2

Quick Start

2.1 Introduction

The DCE ns-3 module provides facilities to execute within ns-3 existing implementations of userspace and kernelspace
network protocols.

As of today, the Quagga routing protocol implementation and a few versions of the Linux kernel network stack are
known to run within DCE, hence allowing network protocol experimenters and researchers to use the unmodified
implementation of their protocols for real-world deployments and simulations.

2.2 Build DCE

DCE offers two major modes of operation:

1. The basic mode, where DCE uses the ns-3 TCP stacks,

2. The advanced mode, where DCE uses a Linux network stack instead.

2.2.1 Building DCE basic mode

Note that as of version 1.12, DCE requires about 12 to 15 GB of space in your working directory.

First you need to download Bake using Git and set some environment variables:

git clone https://gitlab.com/nsnam/bake.git
cd bake
export PATH=$PATH:`pwd`/build/bin:`pwd`/build/bin_dce
export LD_LIBRARY_PATH=`pwd`/build/lib${LD_LIBRARY_PATH:+:$LD_LIBRARY_PATH}
export DCE_PATH=`pwd`/build/bin_dce:`pwd`/build/sbin

then you can install it using bake:

7

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

./bake.py configure -e dce-ns3-$version

./bake.py check

./bake.py show

The check and show commands check for missing packages needed by the configured module. Please use your package
manager to install missing ones, and then proceed with:

./bake.py download

./bake.py build

Note that dce-ns3-$version is the DCE module with a version number. If you would like to use the development
version of DCE module, you can specify dce-ns3-dev as a module name for bake.

DCE version 1.12 is tested on Ubuntu 20.04 only, and DCE version 1.11 is only known to work for Ubuntu 16.04.

The download output should look something like this for the dce-ns3-1.12 module:

>> Downloading iperf - OK
>> Searching for system dependency gawk - OK
>> Downloading bash - OK
>> Downloading thttpd - OK
>> Downloading wget - OK
>> Searching for system dependency qt - OK
>> Searching for system dependency g++ - OK
>> Searching for system dependency setuptools - OK
>> Searching for system dependency gi-cairo - OK
>> Searching for system dependency gir-bindings - OK
>> Searching for system dependency pygobject - OK
>> Searching for system dependency pygraphviz - OK
>> Searching for system dependency python3-dev - OK
>> Searching for system dependency mercurial - OK
>> Downloading glibc-2.31 (target directory:glibc) - OK
>> Downloading netanim-3.108 - OK
>> Downloading libaspect - OK
>> Downloading pybindgen-0.22.0 (target directory:pybindgen) - OK
>> Downloading linux-dev (target directory:linux) - OK
>> Downloading ns-3.35 (target directory:ns-3.35) - OK
>> Downloading dce-meta-1.12 (target directory:ns-3-dce) - OK
>> Downloading dce-ns3-1.12 (target directory:ns-3-dce) - (Nothing to do, source
→˓directory already exists) - OK

The build output should look something like this for the dce-ns3-dev module:

>> Building iperf - OK
>> Building bash - OK
>> Building thttpd - OK
>> Building wget - OK
>> Building glibc-2.31 - OK
>> Building libaspect - OK
>> Building pybindgen-0.22.0 - OK
>> Building netanim-3.108 - OK
>> Building linux-dev - OK
>> Building ns-3.35 - OK
>> Building dce-ns3-1.12 - OK

After building, change into the source/ns-3-dce directory and check that tests pass by running:

8 Chapter 2. Quick Start

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

Listing 1: Running unit tests

1 cd source/ns-3-dce
2 ./test.py

2.2.2 Building DCE advanced mode (with Linux kernel)

If you would like to try Linux network stack instead of ns-3 network stack, you can try the advanced mode. The
difference to build the advanced mode is the different module name dce-linux instead of dce-ns3 (basic mode).

Listing 2: Installation of DCE via bake

1 ./bake.py configure -e dce-linux-$version
2 ./bake.py check
3 ./bake.py show
4 ./bake.py download
5 ./bake.py build

Note that dce-linux-$version is the DCE module with a version number. If you would like to use the development
version of DCE module, you can specify dce-linux-dev as a module name for bake.

2.2.3 Docker container instructions

If you have a Docker container of Ubuntu 20.04, you can try the following installation recipe. This also lists all of the
Ubuntu 20.04 packages needed for DCE version 1.12 and DCE quagga version 1.12.

Listing 3: Installation of DCE into a new ubuntu:20.04 container

1 apt install -y g++ cmake ninja-build ccache libgsl-dev libgtk-3-dev libboost-dev wget
→˓git python3 python3-pip

2 apt install -y automake bc bison flex gawk libc6 libc6-dbg libdb-dev libssl-dev
→˓libpcap-dev vim rsync gdb

3 apt install -y mercurial indent libsysfs-dev
4 pip3 install requests distro
5 git clone https://gitlab.com/nsnam/bake.git
6 cd bake
7 git checkout -b dce-1.12 origin/dce-1.12
8 export PATH=$PATH:`pwd`/build/bin
9 export LD_LIBRARY_PATH=`pwd`/build/lib

10 export DCE_PATH=`pwd`/build/bin_dce:`pwd`/build/sbin
11 ./bake.py configure -e dce-linux-1.12 -e dce-quagga-1.12
12 ./bake.py show
13 ./bake.py download
14 ./bake.py build

2.2.4 Building DCE using WAF

While Bake is the best option, another one is the configuration and build using WAF. WAF is a Python-based frame-
work for configuring, compiling and installing applications. The configuration scripts are coded in Python files named
wscript, calling the WAF framework, and called by the waf executable.

In this case you need to install the single packages one by one. You may want to start with ns-3:

• GIT_NS3= git@gitlab.com:nsnam/ns-3-dev.git

2.2. Build DCE 9

mailto:git@gitlab.com

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

• LAST_VERSION= ns-3.34

Listing 4: ns-3 installation

1 export HOME=`pwd`
2 mkdir dce
3 cd dce
4 # Download pybindgen (optional)
5 git clone https://github.com/gjcarneiro/pybindgen.git
6 cd pybindgen
7 python3 setup.py install
8

9 # Download ns-3
10 # git instructions
11 git clone GIT_NS3
12 git checkout LAST_VERSION
13

14 # Configure
15 ./waf configure --enable-examples -d optimized --prefix=$HOME/dce/install
16

17 # Build and install in the directory specified by
18 # --prefix parameter
19 ./waf build
20 ./waf install

More detailed information on installation requirements can be found on the ns-3 wiki.

Then you can download and install net-next-nuse and DCE (*net-next-nuse includes the linux stack module):

• GIT_DCE= git@github.com:direct-code-execution/ns-3-dce

Listing 5: Kernel and DCE installation

1 # Clone net-next-nuse
2 git clone https://github.com/libos-nuse/net-next-nuse.git
3 cd net-next-nuse
4 # Select a kernel version
5 git checkout libos-v4.4
6 # Configure and build
7 make defconfig OPT=yes ARCH=sim
8 make library OPT=yes ARCH=sim
9 cd ..

10

11 # Download, configure, build and install DCE
12 git clone GIT_DCE
13 ./waf configure --with-ns3=$HOME/dce/build --enable-opt \
14 --enable-kernel-stack=$HOME/dce/net-next-nuse/arch \
15 --prefix=$HOME/dce/install
16 ./waf build
17 ./waf install

2.3 Examples

If you succeeded to build DCE, you can try an example script which is already included in DCE package.

10 Chapter 2. Quick Start

https://www.nsnam.org/wiki/Installation
mailto:git@github.com

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

2.3.1 Example: Simple UDP socket application

This example executes the binaries named udp-client and udp-server under ns-3 using DCE. These 2 binaries are
written using POSIX socket API in order to send and receive UDP packets.

If you would like to see what is going on this script, please refer to the user’s guide.

Listing 6: Listing of the files generated by the dce-udp-simple example

$ cd source/ns-3-dce
$./waf --run dce-udp-simple
$ ls

elf-cache files-0 exitprocs
$ ls -lR files-0

files-0:
total 4
drwxr-x--- 3 furbani planete 4096 Sep 2 17:02 var

files-0/var:
total 4
drwxr-x--- 4 furbani planete 4096 Sep 2 17:02 log

files-0/var/log:
total 8
drwxr-x--- 2 furbani planete 4096 Sep 2 17:02 53512
drwxr-x--- 2 furbani planete 4096 Sep 2 17:02 53513

files-0/var/log/53512:
total 12
-rw------- 1 furbani planete 12 Sep 2 17:02 cmdline
-rw------- 1 furbani planete 185 Sep 2 17:02 status
-rw------- 1 furbani planete 0 Sep 2 17:02 stderr
-rw------- 1 furbani planete 21 Sep 2 17:02 stdout

files-0/var/log/53513:
total 12
-rw------- 1 furbani planete 22 Sep 2 17:02 cmdline
-rw------- 1 furbani planete 185 Sep 2 17:02 status
-rw------- 1 furbani planete 0 Sep 2 17:02 stderr
-rw------- 1 furbani planete 22 Sep 2 17:02 stdout

This simulation produces two directories, the content of elf-cache is not important now for us, but files-0 is. files-0
contains first node’s file system, it also contains the output files of the dce applications launched on this node. In the
/var/log directory there are some directories named with the virtual pid of corresponding DCE applications. Under
these directories there is always 4 files:

1. cmdline: which contains the command line of the corresponding DCE application, in order to help you to
retrieve what is it,

2. stdout: contains the stdout produced by the execution of the corresponding application,

3. stderr: contains the stderr produced by the execution of the corresponding application.

4. status: contains a status of the corresponding process with its start time. This file also contains the end time and
exit code if applicable.

Before launching a simulation, you may also create files-xx directories and provide files required by the applications
to be executed correctly.

2.3. Examples 11

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

2.3.2 Example: iperf

This example shows the usage of iperf with DCE. You are able to generate traffic by well-known traffic generator iperf
in your simulation. For more detail of the scenario description, please refer to the user’s guide.

Once you successfully installed DCE with bake, you can execute the example using iperf.

cd source/ns-3-dce
./waf --run dce-iperf

As we saw in the previous example the experience creates directories containing the outputs of different executables,
take a look at the server (node 1) output:

$ cat files-1/var/log/*/stdout
--
Server listening on TCP port 5001
TCP window size: 124 KByte (default)
--
[4] local 10.1.1.2 port 5001 connected with 10.1.1.1 port 49153
[ID] Interval Transfer Bandwidth
[4] 0.0-11.2 sec 5.75 MBytes 4.30 Mbits/sec

the client (node-0) output bellow:

Listing 7: iperf output

$ cat files-0/var/log/*/stdout
--
Client connecting to 10.1.1.2, TCP port 5001
TCP window size: 124 KByte (default)
--
[3] local 10.1.1.1 port 49153 connected with 10.1.1.2 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0- 1.0 sec 640 KBytes 5.24 Mbits/sec
[3] 1.0- 2.0 sec 512 KBytes 4.19 Mbits/sec
[3] 2.0- 3.0 sec 640 KBytes 5.24 Mbits/sec
[3] 3.0- 4.0 sec 512 KBytes 4.19 Mbits/sec
[3] 4.0- 5.0 sec 512 KBytes 4.19 Mbits/sec
[3] 5.0- 6.0 sec 640 KBytes 5.24 Mbits/sec
[3] 6.0- 7.0 sec 512 KBytes 4.19 Mbits/sec
[3] 7.0- 8.0 sec 640 KBytes 5.24 Mbits/sec
[3] 8.0- 9.0 sec 512 KBytes 4.19 Mbits/sec
[3] 9.0-10.0 sec 640 KBytes 5.24 Mbits/sec
[3] 0.0-10.2 sec 5.75 MBytes 4.72 Mbits/sec

if you have already built the advanced mode, you can use Linux network stack over iperf.

cd source/ns-3-dce
./waf --run "dce-iperf --stack=linux"

the command line option –stack=linux makes the simulation use the Linux kernel stack instead of ns-3 network stack.

$ cat files-1/var/log/*/stdout
--
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)
--
[4] local 10.1.1.2 port 5001 connected with 10.1.1.1 port 60120

(continues on next page)

12 Chapter 2. Quick Start

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

(continued from previous page)

[ID] Interval Transfer Bandwidth
[4] 0.0-11.2 sec 5.88 MBytes 4.41 Mbits/sec

$ cat files-0/var/log/*/stdout
--
Client connecting to 10.1.1.2, TCP port 5001
TCP window size: 16.0 KByte (default)
--
[3] local 10.1.1.1 port 60120 connected with 10.1.1.2 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0- 1.0 sec 512 KBytes 4.19 Mbits/sec
[3] 1.0- 2.0 sec 640 KBytes 5.24 Mbits/sec
[3] 2.0- 3.0 sec 640 KBytes 5.24 Mbits/sec
[3] 3.0- 4.0 sec 512 KBytes 4.19 Mbits/sec
[3] 4.0- 5.0 sec 640 KBytes 5.24 Mbits/sec
[3] 5.0- 6.0 sec 512 KBytes 4.19 Mbits/sec
[3] 6.0- 7.0 sec 640 KBytes 5.24 Mbits/sec
[3] 7.0- 8.0 sec 640 KBytes 5.24 Mbits/sec
[3] 8.0- 9.0 sec 512 KBytes 4.19 Mbits/sec
[3] 9.0-10.0 sec 640 KBytes 5.24 Mbits/sec
[3] 0.0-10.2 sec 5.88 MBytes 4.84 Mbits/sec

Interestingly, the two results between two network stacks are slightly different, though the difference is out of scope
of this document.

2.3. Examples 13

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

14 Chapter 2. Quick Start

CHAPTER 3

User’s Guide

This document is for users who want to add support for a new application in ns-3 using DCE.

Direct Code Execution (DCE) allows us to use POSIX socket-based applications as well as Linux kernel network
stack.

3.1 Setup Guide

In order to install DCE you must follow the tutorial Build DCE.

Installation result

The result of the installation process is the creation of libraries from source of DCE and that of ns-3 and also some
tools and sources of an optional Linux kernel if you have also chosen to use the stack of a Linux kernel. Below you
will find the main directories:

| bakefile.xml Bake internal configuration file (generated by bake.py
→˓configure command).
| bakeSetEnv.sh Bake generated file used to configure environmental
→˓variable.
| build Target directory of |ns3| Core and DCE compilation.

| bin
| bin_dce
| etc
| include
| lib
| sbin
| share
| usr
+ var

+ source Source directory during 'bake.py download'. Listed files
→˓below depend on the configuration of bake.

| ccnx
| ccnx-0.6.2.tar.gz

(continues on next page)

15

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

(continued from previous page)

| ns-3-dce
| build
| doc Documentation source
| elf-cache
| example Example scenarios using DCE
| files-0
| files-1
| files-2
| files-3
| files-5
| helper The source code directory for helper library
| model The source code directory for DCE core
| myscripts Sub-module and ad-hoc script directory
| netlink Netlink module
| ns3waf waf extension used by DCE
| test Test script directory
| testpy-output Directory used for test results
+ utils Utilities used by DCE

| elf-loader
| iperf
| iperf-2.0.5-source.tar.gz
| iproute
| iproute2-2.6.38.tar.bz2
| iputils
| iputils-s20101006.tar.bz2
| mptcp
| net-next-sim-2.6.36
| ns-3-dev-dce
| pybindgen-user
| quagga
| quagga-0.99.20.tar.gz
| thttpd
| thttpd-2.25b.tar.gz
| umip
| wget
+ wget-1.14.tar.gz

3.2 Basic Use Cases

3.2.1 Using your userspace protocol implementation

As explained in How It Works, DCE needs to relocate the executable binary in memory, and these binary files need to
be built with specific compile/link options.

In order to this you should follow the two following rules:

1. Compile your objects using this gcc flag: -fPIC for example: gcc -fPIC -c foo.c

1. (option) Some application needs to be compile with -U_FORTIFY_SOURCE so that the application doesn’t
use alternative symbols including __chk (like memcpy_chk).

2. Link your executable using this gcc flag: -pie and -rdynamic for example: gcc -o foo -pie
-rdynamic foo.o

3. Verify the produced executable using readelf utility in order to display the ELF file header and to verify that
your exe is of type DYN indicating that DCE should be able to relocate and virtualize it under ns-3 virtual world

16 Chapter 3. User’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

and network. For example: readelf -h foo|grep Type: ==> Type: DYN (Shared object
file)

4. Check also that your executable runs as expected outside of ns-3 and DCE.

Install the target executable

Copy the executable file produced in a specified directory in the variable environment DCE_PATH so that DCE can
find it. DCE_PATH behaves like the variable PATH and can contain several directories such as /home/USER/
iproute2/ip:/home/USER/iperf3/src:/home/USER/iperf2/src

Write a ns-3 script

Now that you have compiled your executable you can use it within ns-3 script with the help of a set of DCE Helper
Class:

HELPER CLASS
NAME

INCLUDE NAME DESCRIPTION

DceManagerHelper ns3/dce-manager-
helper.h

A DceManager is a DCE internal class which manage the exe-
cution of the executable you will declare to run within ns-3; The
DceManagerHelper is the tool you will use within your script to
parameter and install DceManager on the ns-3 nodes where you
plan to run binaries.

DceApplicationHelper ns3/dce-application-
helper.h

You will use this helper in order to define which application you
want to run within ns-3 by setting the name of the binary its op-
tionals arguments, its environment variables, and also optionally
if it take its input from a file instead of stdin.
This class can be derived if you need to do more preparation be-
fore running your application. Often applications need configu-
ration file to work properly, for example if you look at the con-
tents of the helper named CcnClientHelper you will see that his
job is to create the key files needed for the operation of CCNx’s
applications.

LinuxStackHelper ns3/linux-stack-
helper.h

This helper is used to configure parameters of Linux kernel when
we are using the advanced mode.

CcnClientHelper ns3/ccn-client-
helper.h

This helper is a subclass of DceApplicationHelper, its jobs is to
create keys files used by ccnx executables in order to run them
correctly within NS3.

QuaggaHelper ns3/quagga-helper.h This helper is a subclass of DceApplicationHelper. It will help
you to setup Quagga applications.

Note that the table above indicates the name of includes, so you can look at the comments in them, but in reality for
DCE use you need to include only the file ns3/dce-module.h.

The directory named myscripts is a good place to place your scripts. To create a new script you should create a
new directory under myscripts, and put your sources and a configuration file for waf build system, this file should
be named wscript. For starters, you may refer to the contents of the directory myscripts/ping.

For more detail, please refer DCE API (doxygen) document.

3.2. Basic Use Cases 17

../../html/index.html

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

Compile the script

To compile simply execute the command waf. The result must be under the directory named build/bin/
myscripts/foo/bar where foo is your directory and bar your executable according to the content of your
wscript file.

Launch the script

Simply launch your script like any other program.

$./waf --run bar

Results

The execution of the apps using DCE generates special files which reflect the execution thereof. On each node DCE
creates a directory /var/log, this directory will contain subdirectory whose name is a number. This number is the
pid of a process. Each of these directories contains the following files cmdline, status, stdout, stderr. The
file cmdline recalls the name of the executable run followed arguments. The file status contains an account of
the execution and dating of the start; optionally if the execution is completed there is the date of the stop and the return
code. The files stdout and stderr correspond to the standard output of the process in question.

Example: DCE Simple UDP (dce-udp-simple)

The example uses two POSIX socket-based application in a simulation. Please take time to look at the source dce-
udp-simple.cc:

1 #include "ns3/network-module.h"
2 #include "ns3/core-module.h"
3 #include "ns3/internet-module.h"
4 #include "ns3/dce-module.h"
5

6 using namespace ns3;
7

8 int main (int argc, char *argv[])
9 {

10 CommandLine cmd;
11 cmd.Parse (argc, argv);
12

13 NodeContainer nodes;
14 nodes.Create (1);
15

16 InternetStackHelper stack;
17 stack.Install (nodes);
18

19 DceManagerHelper dceManager;
20 dceManager.Install (nodes);
21

22 DceApplicationHelper dce;
23 ApplicationContainer apps;
24

25 dce.SetStackSize (1 << 20);
26

27 dce.SetBinary ("udp-server");

(continues on next page)

18 Chapter 3. User’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

(continued from previous page)

28 dce.ResetArguments ();
29 apps = dce.Install (nodes.Get (0));
30 apps.Start (Seconds (4.0));
31

32 dce.SetBinary ("udp-client");
33 dce.ResetArguments ();
34 dce.AddArgument ("127.0.0.1");
35 apps = dce.Install (nodes.Get (0));
36 apps.Start (Seconds (4.5));
37

38 Simulator::Stop (Seconds (1000100.0));
39 Simulator::Run ();
40 Simulator::Destroy ();
41

42 return 0;
43 }

You can notice that we create a ns-3 Node with an Internet Stack (please refer to ns-3 doc. for more info), and we can
also see 2 new Helpers:

1. DceManagerHelper which is used to Manage DCE loading system in each node where DCE will be used.

2. DceApplicationHelper which is used to describe real application to be launched by DCE within ns-3 simulation
environment.

Example: DCE with iperf(dce-iperf)

The example uses iperf traffic generator in a simulation. The scenario is here:

1 #include "ns3/network-module.h"
2 #include "ns3/core-module.h"
3 #include "ns3/internet-module.h"
4 #include "ns3/dce-module.h"
5 #include "ns3/point-to-point-module.h"
6 #include "ns3/applications-module.h"
7 #include "ns3/netanim-module.h"
8 #include "ns3/constant-position-mobility-model.h"
9 #include "ccnx/misc-tools.h"

10

11 using namespace ns3;
12 NS_LOG_COMPONENT_DEFINE ("DceIperf");
13 // ===
14 //
15 // node 0 node 1
16 // +----------------+ +----------------+
17 // | | | |
18 // +----------------+ +----------------+
19 // | 10.1.1.1 | | 10.1.1.2 |
20 // +----------------+ +----------------+
21 // | point-to-point | | point-to-point |
22 // +----------------+ +----------------+
23 // | |
24 // +---------------------+
25 // 5 Mbps, 2 ms
26 //
27 // 2 nodes : iperf client en iperf server

(continues on next page)

3.2. Basic Use Cases 19

http://www.nsnam.org/documentation/

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

(continued from previous page)

28 //
29 // Note : Tested with iperf 2.0.5, you need to modify iperf source in order to
30 // allow DCE to have a chance to end an endless loop in iperf as follow:
31 // in source named Thread.c at line 412 in method named thread_rest
32 // you must add a sleep (1); to break the infinite loop....
33 // ===
34 int main (int argc, char *argv[])
35 {
36 std::string stack = "ns3";
37 bool useUdp = 0;
38 std::string bandWidth = "1m";
39 CommandLine cmd;
40 cmd.AddValue ("stack", "Name of IP stack: ns3/linux/freebsd.", stack);
41 cmd.AddValue ("udp", "Use UDP. Default false (0)", useUdp);
42 cmd.AddValue ("bw", "BandWidth. Default 1m.", bandWidth);
43 cmd.Parse (argc, argv);
44

45 NodeContainer nodes;
46 nodes.Create (2);
47

48 PointToPointHelper pointToPoint;
49 pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
50 pointToPoint.SetChannelAttribute ("Delay", StringValue ("1ms"));
51

52 NetDeviceContainer devices;
53 devices = pointToPoint.Install (nodes);
54

55 DceManagerHelper dceManager;
56 dceManager.SetTaskManagerAttribute ("FiberManagerType", StringValue (

→˓"UcontextFiberManager"));
57

58 if (stack == "ns3")
59 {
60 InternetStackHelper stack;
61 stack.Install (nodes);
62 dceManager.Install (nodes);
63 }
64 else if (stack == "linux")
65 {
66 #ifdef KERNEL_STACK
67 dceManager.SetNetworkStack ("ns3::LinuxSocketFdFactory", "Library", StringValue

→˓("liblinux.so"));
68 dceManager.Install (nodes);
69 LinuxStackHelper stack;
70 stack.Install (nodes);
71 #else
72 NS_LOG_ERROR ("Linux kernel stack for DCE is not available. build with dce-

→˓linux module.");
73 // silently exit
74 return 0;
75 #endif
76 }
77 else if (stack == "freebsd")
78 {
79 #ifdef KERNEL_STACK
80 dceManager.SetNetworkStack ("ns3::FreeBSDSocketFdFactory", "Library",

→˓StringValue ("libfreebsd.so"));
(continues on next page)

20 Chapter 3. User’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

(continued from previous page)

81 dceManager.Install (nodes);
82 FreeBSDStackHelper stack;
83 stack.Install (nodes);
84 #else
85 NS_LOG_ERROR ("FreeBSD kernel stack for DCE is not available. build with dce-

→˓freebsd module.");
86 // silently exit
87 return 0;
88 #endif
89 }
90

91 Ipv4AddressHelper address;
92 address.SetBase ("10.1.1.0", "255.255.255.252");
93 Ipv4InterfaceContainer interfaces = address.Assign (devices);
94 // Save pointer to server's IPv4 instance, and IP interface index, for later
95 std::pair<Ptr<Ipv4>, uint32_t> returnValue = interfaces.Get (1);
96 Ptr<Ipv4> serverIpv4 = returnValue.first;
97 uint32_t serverIndex = returnValue.second;
98

99 // setup ip routes
100 Ipv4GlobalRoutingHelper::PopulateRoutingTables ();
101 #ifdef KERNEL_STACK
102 if (stack == "linux")
103 {
104 LinuxStackHelper::PopulateRoutingTables ();
105 }
106 #endif
107

108

109 DceApplicationHelper dce;
110 ApplicationContainer apps;
111 std::ostringstream serverIp;
112

113 dce.SetStackSize (1 << 20);
114

115 // Launch iperf client on node 0
116 dce.SetBinary ("iperf");
117 dce.ResetArguments ();
118 dce.ResetEnvironment ();
119 dce.AddArgument ("-c");
120

121 // Extract server IP address
122 Ipv4Address serverAddress = serverIpv4->GetAddress (serverIndex, 0).GetLocal ();
123 serverAddress.Print (serverIp);
124

125 dce.AddArgument (serverIp.str());
126 dce.AddArgument ("-i");
127 dce.AddArgument ("1");
128 dce.AddArgument ("--time");
129 dce.AddArgument ("10");
130 if (useUdp)
131 {
132 dce.AddArgument ("-u");
133 dce.AddArgument ("-b");
134 dce.AddArgument (bandWidth);
135 }
136

(continues on next page)

3.2. Basic Use Cases 21

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

(continued from previous page)

137 apps = dce.Install (nodes.Get (0));
138 apps.Start (Seconds (0.7));
139 apps.Stop (Seconds (20));
140

141 // Launch iperf server on node 1
142 dce.SetBinary ("iperf");
143 dce.ResetArguments ();
144 dce.ResetEnvironment ();
145 dce.AddArgument ("-s");
146 dce.AddArgument ("-P");
147 dce.AddArgument ("1");
148 if (useUdp)
149 {
150 dce.AddArgument ("-u");
151 }
152

153 apps = dce.Install (nodes.Get (1));
154

155 pointToPoint.EnablePcapAll ("iperf-" + stack, false);
156

157 apps.Start (Seconds (0.6));
158

159 setPos (nodes.Get (0), 1, 10, 0);
160 setPos (nodes.Get (1), 50,10, 0);
161

162 Simulator::Stop (Seconds (40.0));
163 Simulator::Run ();
164 Simulator::Destroy ();
165

166 return 0;
167 }

This scenario is simple there is 2 nodes linked by a point 2 point link, the node 0 launch iperf as a client via the
command iperf -c 10.1.1.2 -i 1 –time 10 and the node 1 launch iperf as a server via the command iperf -s -P 1. You
can follow this to launch the experiment:

3.2.2 Using your in-kernel protocol implementation

There are a number of protocols implemented in kernel space, like many transport protocols (e.g., TCP, UDP, SCTP),
Layer-3 forwarding plane (IPv4, v6 with related protocols ARP, Neighbor Discovery, etc). DCE can simulate these
protocols with ns-3 and a kernel compiled as a library. This is not possible with the linux vanilla kernel hence you
need to use a slightly modified kernel (net-next-sim - deprecated - or libos which is the successor of net-next-sim).

This document describes how to retrieve, configure, compile and use this custom kernel in DCE. As an example, it
shows how to enable an in-tree but optional protocol - Stream Control Transmission Protocol (SCTP) - and an out
of tree protocol: Multipath TCP (MPTCP). Although other protocols may not adapt these patterns as-is, you will see
what’s needed to implement for your purpose.

• 1. Configure a kernel (make menuconfig in Linux)

• 2. Build a DCE compatible linux kernel

• 2.1 With net-next-sim (deprecated)

• 2.2 Build an MPTCP kernel with net-next-sim

22 Chapter 3. User’s Guide

https://github.com/direct-code-execution/net-next-sim
https://github.com/libos-nuse/net-next-nuse
https://github.com/direct-code-execution/net-next-sim

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

• 2.3 With libos

• 3. Write user space application to use this protocol

• 4. Write ns-3 scenario to use above applications.

• 5. run it !

1. Configure a kernel (make menuconfig in Linux)

In Linux kernel, there is a configuration system in Linux kernel to enable/disable features. This is typically done
by make menuconfig command, and it writes a file (.config) at the kernel source directory. Build system (e.g., make
bzImage) refers the file which source files are compiled.

3.2. Basic Use Cases 23

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

In our DCE Linux kernel module (i.e. net-next-sim available at github.com), we have arch/sim/defconfig file to
store the default configuration of kernel features. You may need to add proper configuration parameters (e.g., CON-
FIG_IP_SCTP) to build the protocol by default.

For the Linux SCTP implementation, we need at least the following configuration parameters.

• CONFIG_IP_SCTP=y

• CONFIG_SCTP_DEFAULT_COOKIE_HMAC_NONE=y

• CONFIG_CRYPTO_CRC32C=y

• CONFIG_CRC32=y

These can be added to the file (arch/sim/defconfig) or added manually to .config when needed.

Note

These configuration options SHOULD be minimized at the beginning since adding new option may require new
functions which DCE doesn’t support at the time and need to implement glue code.

2. Build a DCE compatible linux kernel

DCE can simulate these protocols with ns-3 and a kernel compiled as a library named liblinux.so. This is not possible
with the linux vanilla kernel hence you need to use a slightly modified kernel (net-next-sim - deprecated - or libos
which is the successor of net-next-sim). The following section presents the two methods, net-next-sim being slightly
easier to install.

2.1 With net-next-sim (deprecated)

To build the liblinux.so, DCE version of Linux kernel,

make defconfig ARCH=sim
make library ARCH=sim

You can use make menuconfig command (below) instead of editing the defconfig file. If everything is fine, you will
see liblinux.so linked to libsim-linuxv.y.z.so file at the root directory of Linux kernel.

make menuconfig ARCH=sim

2.2 Build an MPTCP kernel with net-next-sim

DISCLAIMER: This is a transcript of Hajime’s guide https://plus.google.com/+HajimeTazaki/posts/1QUmR3n3vNA
updated on a best effort basis. Hence it may be possible to compile newer versions, in which case patches are welcome.
Build steps for DCE integration is also available as a script in utils/mptcp-build.sh.

1) Get linux kernel mptcp variant:

$ git clone mptcp_git_
$ git checkout -b sim3.14 mptcp_v0.89

1) Merge in mptcp code the changes required to make it work in DCE. Those changes are listed in the net-next-sim
project

24 Chapter 3. User’s Guide

https://github.com/direct-code-execution/net-next-sim
https://github.com/libos-nuse/net-next-nuse
https://github.com/direct-code-execution/net-next-sim
https://github.com/direct-code-execution/net-next-sim
https://github.com/multipath-tcp/mptcp
https://github.com/direct-code-execution/net-next-sim

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

% cd mptcp
% git remote add dce git://github.com/direct-code-execution/net-next-sim.
→˓git
% git fetch dce
% git merge dce/sim-ns3-3.14.0-branch

2) Enable mptcp in the kernel configuration. There are 2 ways possible:

• patch the kernel config manually (you can

% cat >> arch/sim/defconfig <<END
CONFIG_MPTCP=y
CONFIG_MPTCP_PM_ADVANCED=y
CONFIG_MPTCP_FULLMESH=y
CONFIG_MPTCP_NDIFFPORTS=y
CONFIG_DEFAULT_FULLMESH=y
CONFIG_DEFAULT_MPTCP_PM="fullmesh"
CONFIG_TCP_CONG_COUPLED=y
CONFIG_TCP_CONG_OLIA=y
END

• or use menuconfig to enable these options as explained in http://multipath-tcp.org/pmwiki.php/Users/
DoItYourself

% make menuconfig ARCH=sim

3) Generate the kernel configuration:

% make defconfig ARCH=sim

4) build kernel (as a shared library)

$ make library ARCH=sim

If everything is going well, you can try to use it over ns-3

1) build ns-3 related tools

% make testbin -C arch/sim/test

2) run an mptcp simulation !

% cd arch/sim/test/buildtop/source/ns-3-dce
% ./waf --run dce-iperf-mptcp

you should see generated *.pcap files in your dce folder.

2.3 With libos

Libos is the successor of net-next-sim. There are attempts to merge libos within the linux kernel library lkl project but
it will take quite some time before being able to run lkl in DCE.

1) Get libos code:

$ git clone git@github.com:libos-nuse/net-next-nuse.git
$ git checkout libos-v4.4
$ cd net-next-nuse

3.2. Basic Use Cases 25

http://multipath-tcp.org/pmwiki.php/Users/DoItYourself
http://multipath-tcp.org/pmwiki.php/Users/DoItYourself
https://github.com/libos-nuse/net-next-nuse
https://github.com/direct-code-execution/net-next-sim
https://github.com/libos-nuse/net-next-nuse
https://github.com/lkl/linux
https://github.com/lkl/linux
https://github.com/libos-nuse/net-next-nuse

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

2) Configure the kernel (you can refer to configure)

make defconfig ARCH=lib

3) Compile the kernel

make library ARCH=lib

This will download and compile git submodules from https://github.com/libos-nuse/linux-libos-tools
and execute additionnal steps from the arch/lib/tools/Makefile, as for instance generate an additional
libsim_linux.so. This is the shared library you need to load in DCE. By default DCE looks for
“liblinux.so” so you should do:

DceManagerHelper dceManager;
dceManager.SetNetworkStack ("ns3::LinuxSocketFdFactory", "Library",
→˓StringValue ("libsim-linux.so"));

3. Write user space application to use this protocol

Then, we need to write userspace applications using new feature of kernel protocol. In case of SCTP, we wrote
sctp-client.cc and sctp-server.cc.

Optional You may optinally need external libraries to build/run the applications. In this case, the applications need
lksctp-tools, so that applications fully benefit the features of SCTP, rather than only using standard POSIX socket API.

Moreover, adding system dependency to bake configuration file (i.e., bakeconf.xml) would be nice to assist build
procedure. The following is an example of lksctp-tools, which above applications use.

<module name="lksctp-dev">
<source type="system_dependency">
<attribute name="dependency_test" value="sctp.h"/>
<attribute name="try_to_install" value="True"/>
<attribute name="name_apt-get" value="lksctp-dev"/>
<attribute name="name_yum" value="lksctp-tools-devel"/>
<attribute name="more_information" value="Didn't find: lksctp-dev package;

→˓please install it."/>
</source>
<build type="none" objdir="no">
</build>

</module>

4. Write ns-3 scenario to use above applications.

The next step would be writing ns-3 simulation scenario to use the applications you prepared. You need first to add to
your DCE_PATH the path to the previously compiled liblinux.so:

:: $ export DCE_PATH=”$HOME/net-next-sim:$DCE_PATH”

dce-sctp-simple.cc is the script that we prepared. In the script, you may need to load the applications by using DceAp-
plicationHelper as follows.

DceApplicationHelper process;
ApplicationContainer apps;

/* by default DCE, loads liblinux.so. If for some reason your library has a different
→˓name,

(continues on next page)

26 Chapter 3. User’s Guide

https://github.com/libos-nuse/linux-libos-tools
http://code.nsnam.org/ns-3-dce/file/tip/example/sctp-client.cc
http://code.nsnam.org/ns-3-dce/file/tip/example/sctp-server.cc
http://code.nsnam.org/ns-3-dce/file/tip/example/dce-sctp-simple.cc

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

(continued from previous page)

either create a symlink or use these commands to change the name */
DceManagerHelper dceManager;
dceManager.SetNetworkStack ("ns3::LinuxSocketFdFactory", "Library", StringValue (
→˓"liblinux.so"));

process.SetBinary ("sctp-server");
process.ResetArguments ();
process.SetStackSize (1<<16);
apps = process.Install (nodes.Get (0));
apps.Start (Seconds (1.0));

process.SetBinary ("sctp-client");
process.ResetArguments ();
process.ParseArguments ("10.0.0.1");
apps = process.Install (nodes.Get (1));
apps.Start (Seconds (1.5));

5. run it !

./waf --run dce-simple-sctp

If you’re lucky, it’s done.

If you aren’t lucky, you may face errors of DCE, such as unresolved symbols in system calls (called by userspace
applications) or missing kernel functions (used by newly added CONFIG_IP_SCTP option), or invalid memory access
causing segmentation fault. In that case, adding missing functions, so called glue-code would be the next step.

3.2.3 How to add system calls ?

Introduction

If your applications running with DCE are not able to run due to missing function symbols, you need to add the
function call or system call to DCE by hand. The POSIX API coverage of DCE is growing day by day, but your
contribution is definitely helpful not only for your case, but also for someone will use in future.

More specifically, if you faced the following error when you executed, you need to add a function call to DCE. In the
following case, a symbol strfry not defined in DCE is detected during the execution of the simulation.

Types of symbol

There are two types of symbols that is defined in DCE.

• NATIVE

NATIVE symbol is a symbol that DCE doesn’t care about the behavior. So this type of symbol is redirected
to the one provided by underlying host operating system (i.e., glibc).

• DCE

DCE symbol is a symbol that DCE reimplements its behavior instead of using the underlying system’s
one. For instance, socket() call used in an application redirected to DCE to cooperate with ns-3 or
Linux network stack managed by DCE. malloc() is also this kind.

In general (but not strictly), if a call is related to a kernel resource (like NIC, clock, etc), it should use DCE macro.
Otherwise (like strcmp, atoi etc), the call should use NATIVE.

3.2. Basic Use Cases 27

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

Files should be modified

In order to add function calls or system calls that DCE can handle, you need to modify the following files.

• model/libc-ns3.h

This is the first file that you need to edit. You may lookup the symbol that you’re going to add and once
you can’t find it, add the following line.

NATIVE (strfry)

This is the case of the symbol strfry(), which we don’t have to reimplement. But you may need to
add include file that defines the symbol (strfry()) at model/libc-dce.cc.

If the symbol needs to reimplemented for DCE, you may add as follows.

DCE (socket)

• model/dce-abc.cc

In case of DCE symbol, you’re going to introduce DCE redirected function. We use naming convention
with prefix of dce_ to the symbol (i.e., dce_socket) to define new symbol and add the implementation in
a .cc file. The following is the example of dce_socket() implementation.

We implemented dce_socket() function in the file model/dce-fd.cc.

int dce_socket (int domain, int type, int protocol)

In the function, we carefully fill the function contents to cooperate with ns-3. The below line is creating
DCE specific socket instance (i.e., ns-3 or DCE Linux) instead of calling system call allocating kernel
space socket resources.

UnixFd *socket = factory->CreateSocket (domain, type,
protocol);

Other function calls such as file system related functions (e.g., read, fopen), time reheated features (e.g.,
gettimeofday, clock_gettime), signal/process utilities (e.g., getpid, sigaction), and thread library (e.g.,
pthread_create). All these functions should be DCE since DCE core reimplements these feature instead
of using underlying host system.

• model/dce-abc.h

Once you got implemented the new redirected function, you may add the function prototype declaration
to refer from other source files. dce_socket() is added to model/sys/dce-socket.h.

3.2.4 Creating your protocol implementation as a DCE sub-module

If your application has a configuration file to modify the behavior of applications, introducing a particular Helper class
will be helpful to handle your application. In this section, we will give you an advanced way of using your application
with DCE.

Some of existing submodule are following this way. You can find ns-3-dce-quagga and ns-3-dce-umip as examples to
add sub-module.

Obtaining DCE sub-module template

First of all, you could start with referring sub module template available as follows.

hg clone http://code.nsnam.org/thehajime/ns-3-dce-submodule (your module name)

28 Chapter 3. User’s Guide

http://ns-3-dce-quagga.readthedocs.io/en/latest
http://ns-3-dce-umip.readthedocs.io/en/latest

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

The template consists of, wscript, helper, test and documentation. You could rename all/some of them for your module.
Then, put ns-3-dce-submodule directory under ns-3-dce/myscripts/. This will be required to build under ns-3-
dce module as an extension (sub-module) of dce.

Writing wscript

Writing bakeconf.xml (optional)

Implementing helper class (optional)

Writing examples (optional)

3.2.5 Global DCE Configurations

Parameters

The DCE specifics variables are essentially two PATH like variables: so within them you may put paths separated by
‘:’ character.

DCE_PATH is used by DCE to find the executable you want to launch within ns-3 simulated network. This variable
is used when you reference the executable using a relative form like ‘ping’.

DCE_ROOT is similar to DCE_PATH but it is used when you use an absolute form; for example, ‘/bin/bash’.

Please pay attention that executables that you will place in the directories indicated in the previous variables should
be recompiled accordingly to the rules defined in the next chapter.

(FIXME: to be updated)

Tweaking

DCE is configurable with ns-3 attributes. Refer to the following table:

ATTRIBUTE NAME DESCRIPTION VALUES EXAMPLE USAGE
FiberManagerType The TaskManager is

used to switch the
execution context
between threads and
processes.

UcontextFiberManager
the more efficient.
PthreadFiberManager
helpful with gdb to see the
threads. This is the default.

–ns3::TaskManager::FiberManagerType
OR
dceManager.SetTaskManagerAttribute()

LoaderFactory The LoaderFactory
is used to load the
hosted binaries.

CoojaLoaderFactory is the
default and the only one that
supports fork
DlmLoaderFactory is the
more efficient. To use it you
have two ways:
1/ use dce-runner 2/ link
using ldso as default inter-
preter.

–ns3::DceManagerHelper::LoaderFactory
$ dce-runner my-dce-ns3-script
OR
gcc -o my-dce-ns3-
script Wl,–dynamic-
linker=PATH2LDSO/ldso . . .
$ my-dce-ns3-script
–ns3::DceManagerHelper::LoaderFactory
dceManager.SetLoader(. . .);

3.2.6 DCE Cradle

This document describes what DCE Cradle is, how we can use it, how we extend it.

3.2. Basic Use Cases 29

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

Tutorials and how to reproduce the experiment of WNS3 2013 paper is available dce-cradle-usecase.

What is DCE Cradle?

DCE Cradle enables us to use Linux kernel via Direct Code Execution from the ns-3 native socket application. Appli-
cations can access it via ns-3 socket API. Currently (6th Jan. 2014) the following sockets are available:

• IPv4/IPv6 UDP

• IPv4/IPv6 TCP

• IPv4/IPv6 RAW socket

• IPv4/IPv6 DCCP

• IPv4/IPv6 SCTP

Installing DCE Cradle

DCE Cradle is already integrated in ns-3-dce module. You can just build and install DCE as instructed in the parent
document.

How to use it

OnOffHelper onoff = OnOffHelper ("ns3::LinuxTcpSocketFactory",
InetSocketAddress (interfaces.GetAddress (1), 9));

How to extend it

(To be added)

Article

• The project originally started during GSoC project 2012

• “DCE cradle: simulate network protocols with real stacks for better realism”, WNS3 2013, [PDF]

3.2.7 Aspect-based Tracing

Aspect-based tracing, provided by libaspect, allows us to use tracing facility with unmodified code.

One of contradictions when we use DCE is, tracing, how to put trace sources into unmodified code. While DCE gives
an opportunity to use unmodified codes as simulation protocols, one might want to investigate which function is called
or how many messages of a particular protocol are exchanged.

ns-3 originally has a nice feature of tracing with such a purpose, with on-demand trace connector to obtain additional
information. Instead of inserting TraceSource into the original code, DCE gives dynamic trace points with this library,
based on the idea of aspect-based tracing.

For more detail, see the Chapter 6.3.2 of the thesis.

30 Chapter 3. User’s Guide

http://www.nsnam.org/wiki/index.php/GSOC2012Projects#Allow_ns-3_native_applications_to_use_the_ns-3-linux_linux_kernel_stack
http://dl.acm.org/citation.cfm?id=2512755
http://cutebugs.net/files/thesis.pdf

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

Quick Start

To put trace sources without modifying the original code, aspcpp::HookManager gives trace hooks into arbitrary source
codes and functions.

#include <hook-manager.h>

HookManager hooks;
hooks.AddHookBySourceAndFunction ("ip_input.c", "::ip_rcv", &IpRcv);
hooks.AddHookByFunction ("::process_backlog", &ProcBacklog);
hooks.AddHookByFunction ("::arp_xmit", &ArpXmit);

The above examples specifies file name and functions with callback functions in the simulation script.

Limitations

• July 10th, 2013: aspect-based tracing (libaspect) is in the alpha release state. It might be updated frequently.

• Callback function has no argument that it can investigate the contents of buffer that each function handles.

3.2.8 FreeBSD kernel support with DCE

Overview

This module provides an additional network stack support for DCE with FreeBSD kernel.

• This is a POSIX userspace application support over FreeBSD kernel over DCE, over ns-3 over Linux.

• This is NOT the DCE running on FreeBSD operating system (right now DCE only run on Linux).

Usage

bake.py configure -e dce-freebsd-dev
bake.py download
bake.py build

3.2. Basic Use Cases 31

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

Once you finished to build dce-freebsd module, you can write a simulation script that uses FreeBSD kernel as a network
stack. All you need is to specify the library name with an attribute Library to ns3::FreeBSDSocketFdFactory, then
install FreeBSDStackHelper to the nodes.

DceManagerHelper processManager;
processManager.SetNetworkStack ("ns3::FreeBSDSocketFdFactory",

"Library", StringValue ("libfreebsd.so"));
processManager.Install (nodes);
FreeBSDStackHelper stack;
stack.Install (nodes);

How to use your kernel extension with DCE ?

No configuration support (like make menuconfig in Linux) right now. You need to add files into sys/sim/Makefile.

The following represents an example to add Multipath-TCP feature of FreeBSD by adding mptcp_subr.o to the
freebsd-sim/sys/sim/Makefile. If you want to add your code into the kernel build, you may add object file names that
is from your own codes.

diff --git a/sys/sim/Makefile b/sys/sim/Makefile
index 8115e3d..1b2feab 100644
--- a/sys/sim/Makefile
+++ b/sys/sim/Makefile
@@ -100,7 +100,7 @@ ip_divert.o tcp_hostcache.o ip_ecn.o tcp_input.o ip_encap.o
\
tcp_lro.o ip_fastfwd.o tcp_offload.o ip_gre.o tcp_output.o \
ip_icmp.o tcp_reass.o ip_id.o tcp_sack.o ip_input.o tcp_subr.o \
tcp_syncache.o ip_mroute.o tcp_timer.o ip_options.o tcp_timewait.o \

-ip_output.o tcp_usrreq.o raw_ip.o udp_usrreq.o if_llatbl.o
+ip_output.o tcp_usrreq.o raw_ip.o udp_usrreq.o if_llatbl.o mptcp_subr.o

Limitations

While this release gives a proof of concept to use FreeBSD kernel with DCE, there are tons of limitations (listed
below) that have to be improved in near future.

• No sysctl

• No IPv6 address configuration

• No ifconfig

• No delete IP addresses support

• No route command

• No quagga, new FreeBSD-version glue code needed

• No extensive test

• No DCE Cradle

• No Poll implementation

• No getifaddr/routing socket implementations

• Socket options missing (incosistent defined value: SOL_SOCKET(Linux/FreeBSD)=20/0xffff)

32 Chapter 3. User’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

TODO

• refactoring with LinuxStackHelper/FreeBSDStackHelper

• refactoring with wscript (–enable-kernel-stack uses both FreeBSD/Linux for now)

3.3 Advanced Use Cases

3.3.1 Using Alternative, Fast Loader

Note: elf-loader currently only works for DCE version 1.11 and earlier.

DCE optionally supports an alternative ELF loader/linker, so-called elf-loader, in order to replace system-provided
linker/loader module. The intention of the loader is to support unlimited number of instances used by dlmopen
call, which provides DCE to load a single ELF binary to multiple different memory space. dlmopen-based loader
(ns3::DlmLoaderFactory) is much faster than another default one (ns3::CoojaLOaderFactory), but few issues are re-
main so, this is optional.

To Speedup Run-time

In order to use DlmLoaderFactory, you can add command-line argument of waf.

./waf --run dce-tcp-simple --dlm

if you are in the ./waf shell mode, the following command should be used instead.

./build/bin/dce-runner ./build/bin/dce-tcp-simple

3.3.2 Tuning System Limits

When dealing with large or complex models, you can easily reach the limits of your system. For example, you cannot
open more than a fixed number of files. You can try the command “limit –a” to check them.

File limits: “Could not open . . . ”

You may see the following error:

msg="Could not open "/var"", file=../model/dce-manager.cc, line=149
terminate called without an active exception

This error masks error “24 Too many open files”. The cause of this is that the simulation process exceeded the limit
of open files per process. Check the limit of open files per process with “ulimit -n” To solve it, you can edit file
/etc/security/limits.conf and add the following lines at the end:

* hard nofile 65536

* soft nofile 65536

or

myuser hard nofile 65536
myuser soft nofile 65536

3.3. Advanced Use Cases 33

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

Processes limit: “Resource temporarily unavailable”

In this case you may see the an error like the following:

assert failed. cond="error == 0", msg="error=Resource temporarily unavailable",
file=../model/pthread-fiber-manager.cc, line=321
terminate called without an active exception

pthread-fibder-manager invokes pthread_create this is what raises the “Resource temporarily unavailable”. This prob-
lem might be triggered because the maximum number of user processes is not big enough. Use “ulimit -u” to check
this limit. To solve it, you can edit file /etc/security/limits.conf and add the following lines at the end:

* hard nproc 65536

* soft nproc 65536

or

myuser hard nproc 65536

Stack size

DCE directly manages the stack of the processes running on it, assigning it a default value 8192. For complex
executables this value is too small, and may raise ‘stack overflow’ exceptions, or in other cases it may originate
inconsistent values. For example, a value passed to a function changes without apparent reason when the program
enters in that function. The value of the stack size can be changed with the SetStackSize instruction:

DceApplicationHelper dce;
dce.SetStackSize (1<<20);

3.3.3 Debugging your protocols with DCE

Gdb

It is possible to use gdb to debug a script DCE/ns-3. As explained somewhere in the execution of a script is monopro-
cess, then you can put breakpoints in both sources of DCE and those of binaries hosted by DCE.

Install

Although it is not strictly necessary, it is recommended that you recompile a CVS Gdb for use with ns-3-dce. First,
download:

cvs -d :pserver:anoncvs@sourceware.org:/cvs/src login {enter “anoncvs” as the password} cvs -d
:pserver:anoncvs@sourceware.org:/cvs/src co gdb

Note that you might consider looking at http://sourceware.org/gdb/current/ to obtain more efficient (cpu/bandwidth-
wise) download instructions.

Anyway, now, you can build:

cd gdb
./configure
make

34 Chapter 3. User’s Guide

http://sourceware.org/gdb/current/

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

And, then, invoke the version of gdb located in gdb/gdb instead of your system-installed gdb whenever you need to
debug a DCE-based program.

Using

If you use gdb (a CVS or stable version), do not forget to execute the following command prior to running any DCE-
based program:

(gdb) handle SIGUSR1 nostop
Signal StopPrintPass to programDescription
SIGUSR1 NoYesYesUser defined signal 1
(gdb)

An alternate way to do this and avoid having to repeat this command ad-nauseam involves creating a .gdbinit file in
your ns-3-dce directory and putting this inside:

handle SIGUSR1 nostop

or it can be put on the command line using the “-ex” flag:

./waf --run SCRIPT_NAME_HERE --command-template="gdb -ex 'handle SIGUSR1 nostop
→˓noprint' --args %s <args>"

Setup Eclipse Remote Debugging Environment

To remotely debug a DCE script you can use gdbserver as in the following example, changing the host name and port
(localhost:1234):

./waf --run dce-httpd --command-template="gdbserver localhost:1234 %s <args>"

Then you can point a gdb client to your server. For example, in the following figure is reported an Eclipse debug
configuration:

Once you start the debug session, you can use the usual Eclipse/gdb commands.

3.3. Advanced Use Cases 35

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

Helpful debugging hints

There are a couple of functions which are useful to put breakpoints into:

• ns3::DceManager::StartProcessDebugHook

Put a breakpoint in a specific node in a simulation

If you got a trouble in your protocol during interactions between distributed nodes, you want to investigate a specific
state of the protocol in a specific node. In a usual system, this is a typical case of using distributed debugger (e.g.,
ddt, or mpirun xterm -e gdb –args xxx), but it is annoying task in general due to the difficulty of controlling distributed
nodes and processes.

DCE gives an easy interface to debug distributed applications/protocols by the single-process model of its architecture.

The following is an example of debugging Mobile IPv6 stack (of Linux) in a specific node (i.e., home agent). A special
function dce_debug_nodeid() is useful if you put a break condition in a gdb session.

(gdb) b mip6_mh_filter if dce_debug_nodeid()==0
Breakpoint 1 at 0x7ffff287c569: file net/ipv6/mip6.c, line 88.
<continue>

(gdb) bt 4
#0 mip6_mh_filter (sk=0x7ffff7f69e10, skb=0x7ffff7cde8b0)

at net/ipv6/mip6.c:109
#1 0x00007ffff2831418 in ipv6_raw_deliver (skb=0x7ffff7cde8b0,

nexthdr=135)
at net/ipv6/raw.c:199

#2 0x00007ffff2831697 in raw6_local_deliver (skb=0x7ffff7cde8b0,
nexthdr=135)
at net/ipv6/raw.c:232

#3 0x00007ffff27e6068 in ip6_input_finish (skb=0x7ffff7cde8b0)
at net/ipv6/ip6_input.c:197

(More stack frames follow...)

Valgrind

(FIXME: simple session using valgrind)

3.3.4 Testing your protocols with DCE

Since DCE allows protocol implementations to expose network conditions (packet losses, reordering, and errors) with
the interactions among distributed nodes, which is not easily available by traditional user-mode virtualization tools,
exercising your code is easily done with a single simulation script.

Coverage Test

Improving code coverage with writing test programs is one of headache; - writing test program is annoying, - preparing
test network tends to be short-term, and - the result is not reproducible.

This text describes how to measure code coverage of protocol implementations with DCE.

1. build target implementations (applications, kernel stack) with profile option

2. run test program with DCE

36 Chapter 3. User’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

3. parse the result of test coverage

Setup

First, you need to compile your application with additional flags. -fprofile-arcs -ftest-coverage is used for a compila-
tion flag (CFLAGS/CXXFLAGS), and -fprofile-arcs is used for a linker flag (LDFLAGS).

gcc -fprofile-arcs -ftest-coverage -fPIC -c foo.c
gcc -fprofile-arcs -pie -rdynamic foo.o -o newapp

Write Test Program

Next, write a test program like ns-3 simulation script for your application (i.e., newapp).

$ cat myscripts/dce-newapp.cc

int main (int argc, char *argv[])
{

CommandLine cmd;
cmd.Parse (argc, argv);

NodeContainer nodes;
nodes.Create (2);

InternetStackHelper stack;
stack.Install (nodes);

DceManagerHelper dceManager;
dceManager.Install (nodes);

DceApplicationHelper dce;
ApplicationContainer apps;

// application on node 0
dce.SetBinary ("newapp");
dce.ResetArguments();
apps = dce.Install (nodes.Get (0));
apps.Start (Seconds (4.0));

// application on node 1
dce.SetBinary ("newapp");
dce.ResetArguments();
apps = dce.Install (nodes.Get (1));
apps.Start (Seconds (4.5));

Simulator::Stop (Seconds(100.0));
Simulator::Run ();
Simulator::Destroy ();

return 0;
}

3.3. Advanced Use Cases 37

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

Run Test

Then, test your application as normal ns-3 (and DCE) simulation execution.

./waf --run dce-newapp

If you successfully finish your test, you will see the coverage data files (i.e., gcov data files) with a file extension .gcda.

$ find ./ -name "*.gcda"

./files-0/home/you/are/here/ns-3-dce/newapp.gcda

./files-1/home/you/are/here/ns-3-dce/newapp.gcda

Parse Test Result

We use lcov utilities as a parse of coverage test result.

Put the compiler (gcc) generated files (*.gcno) in the result directory,

cp *.gcno ./files-0/home/you/are/here/ns-3-dce/
cp *.gcno ./files-1/home/you/are/here/ns-3-dce/

then run the lcov and genhtml command to generate coverage information of your test program.

lcov -c -d .-b . -o test.info
genhtml test.info -o html

You will see the following output and generated html pages.

Reading data file test.info
Found 8 entries.
Writing .css and .png files.
Generating output.
Processing file ns-3-dce/example/udp-server.cc
genhtml: Use of uninitialized value in subtraction (-) at /usr/bin/genhtml line 4313.
Processing file ns-3-dce/example/udp-client.cc
genhtml: Use of uninitialized value in subtraction (-) at /usr/bin/genhtml line 4313.
Processing file /usr/include/c++/4.4/iostream
Processing file /usr/include/c++/4.4/ostream
Processing file /usr/include/c++/4.4/bits/ios_base.h
Processing file /usr/include/c++/4.4/bits/locale_facets.h
Processing file /usr/include/c++/4.4/bits/char_traits.h
Processing file /usr/include/c++/4.4/bits/basic_ios.h
Writing directory view page.
Overall coverage rate:

lines......: 49.3% (35 of 71 lines)
functions..: 31.6% (6 of 19 functions)

38 Chapter 3. User’s Guide

http://ltp.sourceforge.net/coverage/lcov.php

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

Fuzz Test

(TBA, about integration of trinity)

Regression Test

(TBA)

3.4 Technical Information

3.4.1 DCE in a Nutshell

File System

To start a program in the world of ns-3 you must indicate on which node it will be launched. Once launched this
program will have access only to the file system corresponding to the node that corresponds to a directory on your
machine called file-X where X is the decimal number of the corresponding node. The file-X directories are created by
DCE, only when they do not already exist. Also note that the contents of this directory is not cleared when starting
the script. So you can copy the files required for the operation of your executables in the tree nodes. If possible it is
best that you create these files from the script itself in order to simplify maintenance. DCE provides some helpers for
creating configuration files necessary to the execution of certain apps like CCNx and Quagga.

Network

Your program running in a ns-3 node views the network defined by the script for this node.

3.4. Technical Information 39

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

Time

Time perceived by your executable is the simulated time of ns-3. Also note that DCE supports real time scheduler of
ns-3 with the same limitations.

3.4.2 Limitations

• Currently the POSIX API (libc) is not fully supported by DCE. However there are already about 400 methods
supported. As the goal of DCE is to allow to execute network applications, many methods related to the network
are supported for example socket, connect, bind, listen, read, write, poll, select. The next
chapter list the applications well tested using DCE.

• Some methods are not usable with all options of DCE. For more details refer to chapter Coverage API that lists
all the supported methods.

• The scheduler is not as advanced as that of a kernel, for example if an infinite loop in a hosted application, DCE
can not get out, but this should not happen in applications written correctly.

3.4.3 API Coverage

Below there is the list of the systems calls supported by DCE, the column named Type represents how the system call
is implemented ie:

1. DCE the method is fully rewritten,

2. NATIVE the real corresponding system call is used.

Table 1: API Coverage
System Call Name Domain Include

file
Type Remarks

gettimeofday Date &
Time

sys/time.h DCE

time Date &
Time

time.h DCE

asctime, ctime, gmtime, localtime Date &
Time

time.h DCE

asctime_r, ctime_r, gmtime_r, localtime_r, mktime, strf-
time

Date &
Time

time.h NATIVE

clock_gettime Date &
Time

time.h NATIVEShould not be NATIVE,
do not use for now.

read IO unistd.h DCE
write IO unistd.h DCE
writev IO sys/uio.h DCE
clearerr IO stdio.h DCE
setbuf, setbuffer, setlinebuf, setvbuf IO stdio.h DCE
fseek, ftell, rewind, fgetpos, fsetpos IO stdio.h DCE
printf IO stdio.h DCE
fprintf IO stdio.h NATIVE
sprintf, snprintf IO stdio.h NATIVE
asprintf, vasprintf IO stdio.h NATIVE
dprintf, vdprintf IO stdio.h NATIVE
fgetc, fgetc_unlocked IO stdio.h DCE

Continued on next page

40 Chapter 3. User’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

Table 1 – continued from previous page
System Call Name Domain Include

file
Type Remarks

getc, getc_unlocked IO stdio.h NATIVE
getchar, getchar_unlocked IO stdio.h DCE
_IO_getc IO stdio.h DCE
fputc, fputc_unlocked IO stdio.h DCE
putc, putc_unlocked IO stdio.h NATIVE
putchar, putchar_unlocked IO stdio.h DCE
_IO_putc IO stdio.h DCE
fgets, fgets_unlocked IO stdio.h DCE
fputs, fputs_unlocked IO stdio.h DCE
puts IO stdio.h DCE
ungetc IO stdio.h DCE
fclose IO stdio.h DCE
fcloseall IO stdio.h DCE
fopen, fdopen64, fdopen, freopen IO stdio.h DCE
fflush, fflush_unlocked IO stdio.h DCE
fread, fread_unlocked IO stdio.h DCE
fwrite, fwrite_unlocked IO stdio.h DCE
ferror, ferror_unlocked IO stdio.h DCE
feof, feof_unlocked IO stdio.h DCE
fileno, fileno_unlocked IO stdio.h DCE
perror IO stdlib.h DCE
vprintf IO stdarg.h DCE
vfprintf, vsprintf, vsnprintf IO stdarg.h NATIVE
fcntl IO fcntl.h DCE
dup, dup2 IO unistd.h DCE
open, open64 IO fcntl.h DCE
close IO unistd.h DCE
unlink IO unistd.h DCE
remove IO stdio.h DCE
mkdir IO sys/stat.h DCE
rmdir IO unistd.h DCE
select IO unistd.h DCE
isatty IO unistd.h DCE
ioctl IO sys/ioctl.h DCE
poll IO poll.h DCE
getcwd, getwd, get_current_dir_name IO unistd.h DCE
chdir, fchdir IO unistd.h DCE
alphasort, alphasort64, versionsort IO dirent.h NATIVE
umask IO sys/stat.h DCE
truncate, ftruncate IO unistd.h DCE
ttyname IO unistd.h DCE
lseek IO unistd.h DCE
euidaccess, eaccess IO unistd.h DCE
pathconf IO unistd.h NATIVE
getpwnam, getpwuid, endpwent IO pwd.h DCE
opendir, fdopendir IO dirent.h DCE
readdir, readdir_r IO dirent.h DCE
closedir IO dirent.h DCE

Continued on next page

3.4. Technical Information 41

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

Table 1 – continued from previous page
System Call Name Domain Include

file
Type Remarks

dirfd IO dirent.h DCE
rewinddir IO dirent.h DCE
scandir IO dirent.h DCE
unlinkat IO fcntl.h DCE
pread, pwrite IO unistd.h DCE
uname Kernel sys/utsname.hDCE
sysconf Kernel unistd.h NATIVE
calloc, malloc, free, realloc Memory

Alloca-
tion

stdlib.h DCE

mmap, mmap64, munmap Memory
Map-
pings

sys/map.h DCE

htonl Networkingarpa/inet.h NATIVE
htons Networkingarpa/inet.h NATIVE
ntohl Networkingarpa/inet.h NATIVE
htonl Networkingarpa/inet.h NATIVE
ntohs Networkingarpa/inet.h NATIVE
socket Networkingsys/socket.hDCE Not all flavour are sup-

ported pleaselook at the
doxygen doc.

getsockname Networkingsys/socket.hDCE
getpeername Networkingsys/socket.hDCE
bind Networkingsys/socket.hDCE
connect Networkingsys/socket.hDCE
inet_aton, inet_addr, inet_network, inet_ntoa,
inet_makeaddr, inet_lnaof, inet_netof

Networkingarpa/inet.h NATIVE

inet_ntop Networkingarpa/inet.h DCE
inet_pton Networkingarpa/inet.h NATIVE
getsockopt, setsockopt Networkingsys/socket.hDCE
listen Networkingsys/socket.hDCE
accept Networkingsys/socket.hDCE
shutdown Networkingsys/socket.hDCE
send, sendto, sendmsg Networkingsys/socket.hDCE
recv, recvfrom, recvmsg Networkingsys/socket.hDCE
gethostbyname, gethostbyname2 Networkingnetdb.h DCE
getaddrinfo, freeaddrinfo, gai_strerror Networkingnetdb.h DCE
gethostent, sethostent, endhostset, hstrerror Networkingnetdb.h NATIVE
herror Networkingnetdb.h DCE
getprotoent, getprotobyname, getprotonumber, setpro-
toent, endprotoent

Networkingnetdb.h NATIVE

getservent, getservbyname, getservbyport, setservent,
endservent

Networkingnetdb.h NATIVE

if_nametoindex Networkingnet/if.h DCE
getnameinfo Networkingsys/socket.hDCE
ether_aton_r Networkingnetinet/ether.hNATIVE
atexit Process stdlib.h DCE
getpid, getppid Process unistd.h DCE
getuid, geteuid Process unistd.h DCE

Continued on next page

42 Chapter 3. User’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

Table 1 – continued from previous page
System Call Name Domain Include

file
Type Remarks

setuid Process unistd.h DCE
setgid Process unistd.h DCE
seteuid, setegid Process unistd.h DCE
setreuid, setregid Process unistd.h DCE
setresuid, setresgid Process unistd.h DCE
sched_yield Process sched.h DCE
exit Process unistd.h DCE
getenv Process stdlib.h DCE
putenv Process stdlib.h DCE
setenv, unsetenv Process stdlib.h DCE
clearenv Process stdlib.h DCE
fork Process unistd.h DCE Supported only with the

Cooja Loader.
abort Process stdlib.h DCE
execl, execlp, execle, execv, execvp, execve Process unistd.h DCE Supported only with the

pthread fiber manager.
wait, waitpid Process sys/wait.h DCE
sbrk Process unistd.h DCE
getpagesize Process unistd.h DCE
getgid, getegid Process unistd.h DCE
gethostname Process unistd.h DCE
getpgrp Process unistd.h DCE
pipe Process unistd.h DCE
__sigsetjmp, siglongjmp Process setjmp.h NATIVEExperimental, please do

not use them.
getdtablesize Process unistd.h NATIVE
random, srandom Random stdlib.h DCE
rand, srand Random stdlib.h DCE
drand48, erand48, lrand48, nrand48, mrand48, jrand48,
srand48, seed48, lcong48

Random stdlib.h DCE

drand48_r, erand48_r, lrand48_r, nrand48_r,
mrand48_r, jrand48_r, srand48_r, seed48_r, lcong48_r

Random stdlib.h DCE

signal Signal signal.h DCE
sigaction Signal signal.h DCE
sigemptyset, sigfillset, sigaddset, sigdelset, sigismem-
ber

Signal signal.h NATIVE

sigprocmask Signal signal.h DCE
qsort Sort stdlib.h NATIVE
strerror, strerror_h String string.h NATIVE
setlocale String locale.h DCE Do nothing at all
strcoll String string.h NATIVE
uselocale String locale.h NATIVE
newlocale String locale.h NATIVE
wctob String wchar.h NATIVE
btowc String wchar.h NATIVE
memset String string.h NATIVE
memcpy String string.h NATIVE
bcopy String string.h NATIVE

Continued on next page

3.4. Technical Information 43

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

Table 1 – continued from previous page
System Call Name Domain Include

file
Type Remarks

memcmp String string.h NATIVE
memmove String string.h NATIVE
memchr String string.h NATIVE
strcpy, strncpy String string.h NATIVE
strcat, strncat String string.h NATIVE
strcmp, strncmp String string.h NATIVE
strlen, strnlen String string.h NATIVE
strspn, strcspn String string.h NATIVE
strchr, strrchr String string.h NATIVE
strcasecmp, strncasecmp String string.h NATIVE
strdup, strndup String string.h DCE
getopt, getopt_long String unistd.h DCE
atoi, atol, atoll, atof String stdlib.h NATIVE
strtol, strtoll String stdlib.h DCE
strtoul, strtoull String stdlib.h DCE
strtod String stdlib.h DCE
toupper, tolower String ctype.h NATIVE
index, rindex String strings.h NATIVE
strtok, strtok_r String string.h NATIVE
sscanf String stdio.h NATIVE
basename, dirname String libgen.h NATIVE
bindtextdomain, textdomain, gettext String libintl.h NATIVE
mbrlen String wchar.h NATIVE
strtoimax, strtoumax String inttypes.h NATIVE
openlog, syslog, closelog, vsyslog, setlogmask Syslog syslog.h DCE
pthread_create Thread pthread.h DCE
pthread_exit Thread pthread.h DCE
pthread_self Thread pthread.h DCE
pthread_once Thread pthread.h DCE
pthread_getspecific, pthread_setspecific Thread pthread.h DCE
pthread_key_create Thread pthread.h DCE
pthread_key_delete Thread pthread.h DCE
pthread_mutex_destroy, pthread_mutex_init Thread pthread.h DCE
pthread_mutex_lock, pthread_mutex_trylock,
pthread_mutex_unlock

Thread pthread.h DCE

pthread_mutexattr_destroy, pthread_mutexattr_init Thread pthread.h DCE
pthread_mutexattr_settype Thread pthread.h DCE
pthread_cancel Thread pthread.h DCE
pthread_kill Thread pthread.h DCE
pthread_join Thread pthread.h DCE
pthread_detach Thread pthread.h DCE
pthread_cond_destroy, pthread_cond_init Thread pthread.h DCE
pthread_cond_broadcast, pthread_cond_signal Thread pthread.h DCE
pthread_cond_timedwait, pthread_cond_wait Thread pthread.h DCE
pthread_condattr_destroy, pthread_condattr_init Thread pthread.h DCE

Continued on next page

44 Chapter 3. User’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

Table 1 – continued from previous page
System Call Name Domain Include

file
Type Remarks

sem_init Thread
Syn-
chro-
nization

semaphore.hDCE

sem_destroy Thread
Syn-
chro-
nization

semaphore.hDCE

sem_post Thread
Syn-
chro-
nization

semaphore.hDCE

sem_wait, sem_trywait, sem_timedwait Thread
Syn-
chro-
nization

semaphore.hDCE

sem_getvalue Thread
Syn-
chro-
nization

semaphore.hDCE

sleep, usleep Timer unistd.h DCE
nanosleep Timer time.h DCE
getitimer, setitimer Timer sys/time.h DCE
timerfd_create, timerfd_settime, timerfd_gettime Timer sys/timerfd.hDCE
getgrnam Users &

Groups
grp.h NATIVE

getrusage Users &
Groups

sys/resource.hNATIVE

3.5 DCE Python Scripts

Currently DCE includes an experimental support to the Python language. To enable it, you may need to recompile it
with the flags:

--with-pybindgen=HERE_THE_PYBINDGEN_PATH

indicating the path to an existing Pybindgen source tree to use. Or in case waf didn’t find the interpreter, you can try
to use the flags:

--with-python=HERE_THE_PYTHON_PATH

The first thing you may want to do is to import the DCE module. For example a minimal DCE script in Python could
be:

from ns.DCE import *
print "It works!"

3.5. DCE Python Scripts 45

http://www.python.org/
http://packages.python.org/PyBindGen

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

3.5.1 A first example

In this example, DCE executes a program running ten seconds on a single node.

DCE import
from ns.DCE import *
ns-3 imports
import ns.applications
import ns.core
import ns.network

Increase the verbosity level
ns.core.LogComponentEnable("Dce", ns.core.LOG_LEVEL_INFO)
ns.core.LogComponentEnable("DceManager", ns.core.LOG_LEVEL_ALL)
ns.core.LogComponentEnable("DceApplication", ns.core.LOG_LEVEL_INFO)
ns.core.LogComponentEnable("DceApplicationHelper", ns.core.LOG_LEVEL_INFO)

Node creation
nodes = ns.network.NodeContainer()
nodes.Create(1)

Configure DCE
dceManager = ns.DCE.DceManagerHelper()
dceManager.Install (nodes);
dce = ns.DCE.DceApplicationHelper()

Set the binary
dce.SetBinary ("tenseconds")
dce.SetStackSize (1<<20)
dce.Install returns an instance of ns.DCE.ApplicationContainer
apps = dce.Install (nodes)
apps.Start (ns.core.Seconds (4.0))

Simulation
ns.core.Simulator.Stop (ns.core.Seconds(20.0))
ns.core.Simulator.Run ()
ns.core.Simulator.Destroy ()
print "Done."

You can then run the example with “waf –pyrun . . . ”

./waf --pyrun PATH_TO_YOUR_SCRIPT_HERE

or attach gdb to the python script:

./waf shell
gdb python -ex "set args PATH_TO_YOUR_SCRIPT_HERE" -ex "handle SIGUSR1 nostop noprint"

3.5.2 Limitations

The DCE Python bindings does not currently match completely the C++ API of DCE. The following classes are
supported:

46 Chapter 3. User’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

Class Methods
DceApplication GetPid, SetArguments, SetBinary, SetEgid, SetEnvironment, SetEuid,

SetGid, SetStackSize, SetStdinFile, SetUid
DceApplicationHelper AddArgument, AddArguments, AddEnvironment, Install, InstallInN-

ode, ParseArguments, ResetArguments, ResetEnvironment, SetBinary,
SetEgid, SetEuid, SetGid, SetStackSize, SetStdinFile, SetUid, GetPid

ProcStatus GetCmdLine, GetExitCode, GetNode, GetPid, GetRealDuration, Ge-
tRealEndTime, GetRealStartTime, GetSimulatedDuration, GetSimulat-
edEndTime, GetSimulatedStartTime

DceManagerHelper GetProcStatus, GetVirtualPath, Install, SetAttribute, SetVirtualPath
Ipv4DceRoutingHelper Copy, Create
LinuxStackHelper Install, InstallAll, RunIp, SetRoutingHelper, SysctlGet, SysctlSet

3.5. DCE Python Scripts 47

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

48 Chapter 3. User’s Guide

CHAPTER 4

Developer’s Guide

This document is for the people who want to develop DCE itself.

4.1 Kernel Developer Information

This technical documentation is intended for developers who want to build a Linux kernel in order to use with DCE. A
first part will describe the architecture and the second will show how we went from a net-next kernel 2.6 has a Linux
kernel-stable 3.4.5.

4.1.1 Prerequisite

You must be familiar with ns-3, DCE and Linux kernel development.

4.1.2 Download

The source code can be found in the following repository: http://code.nsnam.org/furbani/ns-3-linux. You must use
mercurial to download the source code.

4.1.3 Goal

The goal of this work is to use the real implementation of the Linux Network Stack within the Simulation environment
furnished by ns-3.

4.1.4 Solution

The solution chosen was to use the Linux kernel source, compile the Net part and make a dynamic library and interface
the result with DCE.

The following schema shows the different parts between a software user space application and the hardware network.

49

http://code.nsnam.org/furbani/ns-3-linux

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

The following schema show the same application running under DCE and ns-3 and using a real kernel network stack:

50 Chapter 4. Developer’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

The green parts are implemented in ns-3-linux source files, the grays parts comes from the Linux kernel sources and
are not modified at all or with only few changes. Application should not be modified at all.

4.1.5 Concepts

If you need a more theoretical documentation you can read the chapter 4.5 of this Ph.D. thesis Experimentation Tools
for Networking Research.

4.1.6 List of files and usage

After doing the cloning of the source,

$ hg clone http://code.nsnam.org/furbani/ns-3-linux
destination directory: ns-3-linux
requesting all changes
adding changesets
adding manifests
adding file changes
added 62 changesets with 274 changes to 130 files
updating to branch default
125 files updated, 0 files merged, 0 files removed, 0 files unresolved

Below are the files delivered under the directory ns-3-linux:

$ ls ns-3-linux/
generate-autoconf.py generate-linker-script.py kernel-dsmip6.patch kernel.patch
→˓Makefile Makefile.print processor.mk README sim (continues on next page)

4.1. Kernel Developer Information 51

http://cutebugs.net/files/thesis.pdf
http://cutebugs.net/files/thesis.pdf

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

(continued from previous page)

The main file is the Makefile its role is to recover the kernel source, compile the NET part of the kernel and all that is
necessary for the operation, the end result is a shared library that can be loaded by DCE.

$ ls ns-3-linux/sim
cred.c glue.c Kconfig pid.c random.c seq.c sim-socket.c
→˓softirq.c tasklet.c timer.c
defconfig hrtimer.c Makefile print.c sched.c sim.c slab.c
→˓sysctl.c tasklet-hrtimer.c workqueue.c
fs.c include modules.c proc.c security.c sim-device.c socket.c
→˓sysfs.c time.c

$ ls ns-3-linux/sim/include
asm generated sim-assert.h sim.h sim-init.h sim-printf.h sim-types.h

These directories contains the architecture specific code and the code doing the interface between the kernel and DCE
and ns-3. Ideally we should not change a line of code outside the kernel arch portion, but in practice we make small
changes : see the patchs files.

Recall: the code of Linux source is mainly C so it is very easy to port to new architecture, the architecture specific
code is contained in a specific directory under arch/XXX directory where XXX name recall the processor used. In our
case we have chosen to create a special architecture for our environment NS3 + DCE, we called sim.

4.1.7 Interfaces between Kernel and DCE

In order to install a kernel on a Node DCE do the following steps:

1. Load the shared library containing the kernel compilation result,

2. Call the init function called sim_init, this method is located in the just loaded library,

3. This sim_init method is called with a parameter which is a struct containing functions pointers to DCE methods
able to be callable from the kernel part,

4. in return the sim_init fill a struct containing function pointers in kernel part which will be used by DCE to
interract with the kernel part.

5. before finish sim_init must initialize the kernel to put it in a running state ready to be usable.

Kernel -> DCE

Methods (there is also one variable) of DCE called by the kernels are the following:

• LinuxSocketFdFactory::Vprintf

• LinuxSocketFdFactory::Malloc

• LinuxSocketFdFactory::Free

• LinuxSocketFdFactory::Memcpy

• LinuxSocketFdFactory::Memset

• LinuxSocketFdFactory::Random

• LinuxSocketFdFactory::EventScheduleNs

• LinuxSocketFdFactory::EventCancel

52 Chapter 4. Developer’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

• CurrentNs

• LinuxSocketFdFactory::TaskStart

• LinuxSocketFdFactory::TaskWait

• LinuxSocketFdFactory::TaskCurrent

• LinuxSocketFdFactory::TaskWakeup

• LinuxSocketFdFactory::TaskYield

• LinuxSocketFdFactory::DevXmit

• LinuxSocketFdFactory::SignalRaised

• LinuxSocketFdFactory::PollEvent

there are located in the source file linux-socket-fd-factory.cc of DCE.

DCE -> Kernel

Methods of Kernel (sim part) called by DCE are the following:

• task_create

• task_destroy

• task_get_private

• sock_socket

• sock_close

• sock_recvmsg

• sock_sendmsg

• sock_getsockname

• sock_getpeername

• sock_bind

• sock_connect

• sock_listen

• sock_shutdown

• sock_accept

• sock_ioctl

• sock_setsockopt

• sock_getsockopt

• sock_poll

• sock_pollfreewait

• dev_create

• dev_destroy

• dev_get_private

• dev_set_address

4.1. Kernel Developer Information 53

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

• dev_set_mtu

• dev_create_packet

• dev_rx

• sys_iterate_files

• sys_file_read

• sys_file_write

the corresponding sources are located in the sim directory.

4.1.8 Build net-next 2.6 kernel

All build operations are done using the make command with the Makefile file under the directory ns-3-linux.

Make Setup

First you should call make setup in order to download the source of the kernel:

$ make setup
git clone git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git net-next-2.
→˓6; \

cd net-next-2.6 && git reset --hard fed66381d65a35198639f564365e61a7f256bf79
Cloning into net-next-2.6...
remote: Counting objects: 2441000, done.
remote: Compressing objects: 100% (377669/377669), done.
Receiving objects: 100% (2441000/2441000), 493.28 MiB | 28.45 MiB/s, done.
remote: Total 2441000 (delta 2043525), reused 2436782 (delta 2039307)
Resolving deltas: 100% (2043525/2043525), done.
Checking out files: 100% (33319/33319), done.

This sources correspond to a specific version well tested with DCE the net-next 2.6 and git tag =
fed66381d65a35198639f564365e61a7f256bf79.

Now the directory net-next-2.6 contains the kernel sources.

Make Menuconfig

Use make menuconfig to configure your kernel, note that modules are not supported by our architecture so options
chosen as modules will not be included in the result kernel.

Build

Finally make will compile all the needed sources and produce a file named libnet-next-2.6.so: this is the library
contains our net-next kernel suitable for DCE usage.

Usage

To use this kernel you should:

1. configure DCE in order to compile using the includes under sim directories to have the good interfaces between
DCE and the kernel. For this you should give to the waf configure the path to the ns-3-linux directory i.e.:

54 Chapter 4. Developer’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

$./waf configure ----enable-kernel-stack=/ABSOLUTE-PATH-TO/ns-3-linux

2. In your ns-3 scenario you should indicate the good kernel file: (the file should be located in a directory presents
in the DCE_PATH env. variable)

dceManager.SetNetworkStack("ns3::LinuxSocketFdFactory", "Library",
StringValue ("libnet-next-2.6.so"));

Test

Use DCE unit test:

$./waf --run "test-runner --verbose"
PASS process-manager 9.470ms
PASS Check that process "test-empty" completes correctly. 0.920ms
PASS Check that process "test-sleep" completes correctly. 0.080ms
PASS Check that process "test-pthread" completes correctly. 0.110ms
PASS Check that process "test-mutex" completes correctly. 0.200ms
PASS Check that process "test-once" completes correctly. 0.070ms
PASS Check that process "test-pthread-key" completes correctly. 0.070ms
PASS Check that process "test-sem" completes correctly. 0.080ms
PASS Check that process "test-malloc" completes correctly. 0.060ms
PASS Check that process "test-malloc-2" completes correctly. 0.060ms
PASS Check that process "test-fd-simple" completes correctly. 0.070ms
PASS Check that process "test-strerror" completes correctly. 0.070ms
PASS Check that process "test-stdio" completes correctly. 0.240ms
PASS Check that process "test-string" completes correctly. 0.060ms
PASS Check that process "test-netdb" completes correctly. 3.940ms
PASS Check that process "test-env" completes correctly. 0.050ms
PASS Check that process "test-cond" completes correctly. 0.160ms
PASS Check that process "test-timer-fd" completes correctly. 0.060ms
PASS Check that process "test-stdlib" completes correctly. 0.060ms
PASS Check that process "test-fork" completes correctly. 0.120ms
PASS Check that process "test-select" completes correctly. 0.320ms
PASS Check that process "test-nanosleep" completes correctly. 0.070ms
PASS Check that process "test-random" completes correctly. 0.090ms
PASS Check that process "test-local-socket" completes correctly. 0.820ms
PASS Check that process "test-poll" completes correctly. 0.320ms
PASS Check that process "test-exec" completes correctly. 0.380ms
PASS Check that process "test-iperf" completes correctly. 0.070ms
PASS Check that process "test-name" completes correctly. 0.080ms
PASS Check that process "test-pipe" completes correctly. 0.160ms
PASS Check that process "test-dirent" completes correctly. 0.070ms
PASS Check that process "test-socket" completes correctly. 0.270ms
PASS Check that process "test-bug-multi-select" completes correctly. 0.260ms
PASS Check that process "test-tsearch" completes correctly. 0.080ms

All is OK.

4.1.9 net-next 2.6 to linux-stable 3.4.5

Now we will try to use a more recent linux kernel. We start with a fresh clone of the ns-3-linux sources.

4.1. Kernel Developer Information 55

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

Makefile

First we need to modify the makefile in order to change the kernel downloaded. For that we need to modify the value
of 2 variables:

1. KERNEL_DIR=linux-stable

2. KERNEL_VERSION=763c71b1319c56272e42cf6ada6994131f0193a7

3. KERNEL_DOWNLOAD=git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

Also we need to remove the patch target named .target.ts because the patch will not pass for this newer version of
kernel.

First Build

Now we can try to build:

$ make defconfig
$ make menuconfig
$ make
mkdir -p sim
cc -O0 -g3 -D__KERNEL__ -Wall -Wstrict-prototypes -Wno-trigraphs -fno-inline \

-iwithprefix ./linux-stable/include -DKBUILD_BASENAME=\"clnt\" \
-fno-strict-aliasing -fno-common -fno-delete-null-pointer-checks \
-fno-stack-protector -DKBUILD_MODNAME=\"nsc\" -DMODVERSIONS \
-DEXPORT_SYMTAB -include autoconf.h -U__FreeBSD__ -D__linux__=1 \
-Dlinux=1 -D__linux=1 -I./sim/include -I./linux-stable/include \
-fpic -DPIC -D_DEBUG \
-I/home/furbani/dev/dce/dev/etude_kernel/V3/ns-3-linux \
-DCONFIG_64BIT -c sim/fs.c -o sim/fs.o

In file included from ./linux-stable/include/asm-generic/bitops.h:12:0,
from ./sim/include/asm/bitops.h:4,
from ./linux-stable/include/linux/bitops.h:22,
from ./linux-stable/include/linux/thread_info.h:52,
from ./linux-stable/include/linux/preempt.h:9,
from ./linux-stable/include/linux/spinlock.h:50,
from ./linux-stable/include/linux/wait.h:24,
from ./linux-stable/include/linux/fs.h:385,
from sim/fs.c:1:

./linux-stable/include/linux/irqflags.h:66:0: warning: "raw_local_irq_restore"
→˓redefined
./sim/include/asm/irqflags.h:8:0: note: this is the location of the previous
→˓definition
In file included from ./linux-stable/include/linux/wait.h:24:0,

from ./linux-stable/include/linux/fs.h:385,
from sim/fs.c:1:

./linux-stable/include/linux/spinlock.h:58:25: fatal error: asm/barrier.h: No such
→˓file or directory
compilation terminated.
make: *** [sim/fs.o] Error 1

Ok now we will try to fix the compilation errors trying not to change too the kernel source. In the following we will
list the main difficulties encountered.

56 Chapter 4. Developer’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

First Error

Recall: the linux source directory include/asm-generic contains a C reference implementation of some code that
should be written in assembly langage for the target architecture. So this code is intented to help the developper to
port to new architectures. So our sim implementation use many of these asm-generic include files. The first warning
show that our code redefine a method defined elsewhere in kernel sources, so the fix is to remove our definition of this
function in opur file named sim/include/asm/irqflags.h.

Second Error

The file asm/barrier.h is missing, we just create under sim/include/asm directory and the implementation is to include
the generic one ie: include/asm-generic/barrier.h.

Change in sim method

Another problem arise the function named kern_mount_data defined in sim/fs.c do not compile any more. So we
need to investigate about this function:

1. Where this function is located in the real code: in linux/fs/namespace.c

2. Why it is reimplemented in sim/fs.c: if you look at our Makefile why try to not compile all the kernel we focus
on the net part only, you can see this line in the Makefile :

dirs=kernel/ mm/ crypto/ lib/ drivers/base/ drivers/net/ net/

in fact we include only this directories. So at this time we can comment the failing line and insert a sim_assert (false);
in order to continue to fix the compilation errors, and then when we will do the first run test we will see if this method
is called and if yes we will need to do a better fix. Remark: sim_assert (false); is a macro used to crash the execution,
we often place it in functions that we need to emulate because required by the linker but that should never be called.

Change in our makefile

After we have the following problem while compiling sim/glue.c the macro IS_ENABLED is not defined. After some
search we found that we need to include linux/kconfig.h in many files. So we modify our makefile to fix like this:

-fno-stack-protector \
-DKBUILD_MODNAME=\"nsc\" -DMODVERSIONS -DEXPORT_SYMTAB \

- -include autoconf.h \
+ -include $(SRCDIR)$(KERNEL_DIR)/include/linux/kconfig.h \

-U__FreeBSD__ -D__linux__=1 -Dlinux=1 -D__linux=1 \
-I$(SRCDIR)sim/include -I$(SRCDIR)$(KERNEL_DIR)/include \
$(AUTOCONF): generate-autoconf.py $(KERNEL_DIR)/.config timeconst.h
./generate-autoconf.py $(KERNEL_DIR)/.config > $@

+ cp autoconf.h sim/include/generated/autoconf.h
+

timeconst.h: $(KERNEL_DIR)/.config
perl $(SRCDIR)$(KERNEL_DIR)/kernel/timeconst.pl $(CONFIG_HZ) > $@

Change in kernel source

Our sim/slab.c do not compile, in this case we want to use our implementation of memory allocation and to do this it
is easier to modify slightly an include file in the kernel sources include/linux/slab.h :

4.1. Kernel Developer Information 57

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

--- a/include/linux/slab.h
+++ b/include/linux/slab.h
@@ -185,6 +185,8 @@ size_t ksize(const void *);
#include <linux/slub_def.h>
#elif defined(CONFIG_SLOB)
#include <linux/slob_def.h>

+#elif defined(CONFIG_SIM)
+#include <asm/slab.h>
#else
#include <linux/slab_def.h>
#endif

As we have already written we do not recommend to change the kernel sources to facilitate future upgrades.

First Launch

After a few corrections we finally get a library containing the kernel named liblinux-stable.so. At this moment we
need to try it using DCE. For the beginning we will try with test-runner executable.

./test.py
assert failed. cond="handle != 0", msg="Could not open elf-cache/0/libnet-next-2.6.so
→˓elf-cache/0/liblinux-stable.so: undefined symbol: noop_llseek", file=../model/cooja-
→˓loader-factory.cc, line=225
terminate called without an active exception
Aborted (core dumped)

We can see that a symbol is not defined : noop_llseek. We find this symbol defined in the kernel source named
fs/read_write.cc. We need to choose a way to add this symbol in our kernel library, we can:

• rewrite it in a source under our sim directory,

• or add it in our makefile.

In this case we choose the second solution so we need to modify our makefile, first we see that the directory fs is not
present in the dirs entry, so we need to add it in the write order (order is the same as found in the kernel Makefile
defined by the variable named vmlinux-main); we also need to indicate that we want only the object read_write.o:

@@ -51,7 +52,7 @@
AUTOCONF=autoconf.h
note: the directory order below matters to ensure that we match the kernel order
-dirs=kernel/ mm/ crypto/ lib/ drivers/base/ drivers/net/ net/
+dirs=kernel/ mm/ fs/ crypto/ lib/ drivers/base/ drivers/net/ net/
empty:=
space:= $(empty) $(empty)
colon:= :

@@ -67,11 +68,12 @@
ctype.o string.o kasprintf.o rbtree.o sha1.o textsearch.o vsprintf.o \
rwsem-spinlock.o scatterlist.o ratelimit.o hexdump.o dec_and_lock.o \
div64.o

+fs/_to_keep=read_write.o

Fake Function

We continue to try our kernel library, now another symbol is missing generic_file_aio_read, this symbol is defined in
the source mm/filemap.cc, it is referenced at least by read_write.c. In this case we decided to create a fake function
because the source mm/filemap.cc is voluminous and we do not want to take all the kernel sources. So we create a

58 Chapter 4. Developer’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

new source under sim directory named sim/filemap.c the body of the function is sim_assert (false); so if this function
called sometimes we will be warned and we will write a more accurate version.

Assert

Later we meet again the function kern_mount_data, thanks to the presence of the sim_assert:

0x00007ffff5c8c572 in kern_mount_data (fs=<optimized out>, data=<optimized out>) at
→˓sim/fs.c:52
52 sim_assert (false);
(gdb) bt
#0 0x00007ffff5c8c572 in kern_mount_data (fs=<optimized out>, data=<optimized out>)
→˓at sim/fs.c:52
#1 0x00007ffff5d85923 in sock_init () at linux-stable/net/socket.c:2548
#2 0x00007ffff5c8d3aa in sim_init (exported=<optimized out>, imported=<optimized out>
→˓, kernel=<optimized out>) at sim/sim.c:169
#3 0x00007ffff7d9151b in ns3::LinuxSocketFdFactory::InitializeStack (this=0x65bde0)
→˓at ../model/linux-socket-fd-factory.cc:535
#4 0x00007ffff7d95ce4 in ns3::EventMemberImpl0::Notify (this=0x6597a0) at /home/
→˓furbani/dev/dce/dev/build/include/ns3-dev/ns3/make-event.h:94
#5 0x00007ffff76b10a8 in ns3::EventImpl::Invoke (this=0x6597a0) at ../src/core/model/
→˓event-impl.cc:39
#6 0x00007ffff7d8ff7c in ns3::LinuxSocketFdFactory::ScheduleTaskTrampoline
→˓(context=0x6597a0) at ../model/linux-socket-fd-factory.cc:373
#7 0x00007ffff7d3b7d4 in ns3::TaskManager::Trampoline (context=0x65d170) at ../model/
→˓task-manager.cc:250
#8 0x00007ffff7d37acd in ns3::PthreadFiberManager::Run (arg=0x65d5d0) at ../model/
→˓pthread-fiber-manager.cc:398
#9 0x00000034be206ccb in start_thread () from /lib64/libpthread.so.0
#10 0x00000034bd6e0c2d in clone () from /lib64/libc.so.6
(gdb)

So this function is called by the initialisation, we must provide an implementation for it:

Listing 1: Implementation taken from vfs_kern_mount from
linux/namespace.c

struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
{

static struct mount local_mnt;
struct mount *mnt = &local_mnt;
struct dentry *root = 0;

memset (mnt,0,sizeof (struct mount));
if (!type)

return ERR_PTR(-ENODEV);
int flags = MS_KERNMOUNT;
char *name = type->name;
if (flags & MS_KERNMOUNT)

mnt->mnt.mnt_flags = MNT_INTERNAL;

root = type->mount(type, flags, name, data);
if (IS_ERR(root)) {

return ERR_CAST(root);
}

mnt->mnt.mnt_root = root;
(continues on next page)

4.1. Kernel Developer Information 59

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

(continued from previous page)

mnt->mnt.mnt_sb = root->d_sb;
mnt->mnt_mountpoint = mnt->mnt.mnt_root;
mnt->mnt_parent = mnt;

// br_write_lock(vfsmount_lock); DCE is monothreaded , so we do not care of lock
→˓here

list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
// br_write_unlock(vfsmount_lock); DCE is monothreaded , so we do not care of
→˓lock here

return &mnt->mnt;
}

Here we do not want to integrate all the code namespace.c, so we copy and paste the function named
kern_mount_data. This solution has the advantage of minimizing code size, the disadvantage is that it can intro-
duce problems if the next version of the kernel need changes in this function.

4.1.10 Conclusion

We will not describe the rest of the port here. But after some iteration we end up with a version that works correctly.
Sometimes we should not hesitate to use gdb to trace the actual execution and correct accordingly code. The rules that
we can gain from this experience’s are as follows:

1. Be patient,

2. Try to not modify the kernel sources,

3. Be pragmatic,

4. Try to not import all the kernel code into our library,

5. Do not hesitate to go back and test other alternatives.

4.2 DCE - POLL IMPLEMENTATION

4.2.1 Introduction

The implementation of the poll system call is inspired by the Linux kernel, therefore we well study first the kernel poll
implementation.

Kernel implementation

Firstly in the kernel every type of file descriptor (file, socket, pipe . . .) must provide a function named poll and conform
to this prototype:

int poll(struct file *file, poll_table *pwait);

Where file is a pointer to a structure representing the file (it looks like this in C++) and pwait is a pointer to a poll
table, pwait may be NULL, we will see later why. The return integer of this function is a mask of poll events which
have already occured on the corresponding file descriptor. The behavior of this function is as follows: 1. It is not a
blocking function, it immediately returns the mask of events regardless of event desired by the caller of poll. 2. if
pwait is not NULL then it add pwait in the wait queue of file, and secondly a pointer to the wait queue is stored in the
poll table pwait.

60 Chapter 4. Developer’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

Thus an event on the file will ascend to the poll, and in the opposite direction when the poll ends it can de-register
itself from the wait queue of the file.

Now that we know the function poll of file, we can study the poll system call, here the following pseudo code com-
mented:

POLL(....)
{

poll_table table; // This table will contain essentially the list of wait queues
→˓that need to wake me,

// and also information about the current thread in order to be
→˓awakened.

poll_table *pwait=&table; // pointer to current poll table.

while (true)
{

foreach(fd) // For each file descriptor ...
{

file *file = get_file(fd); // Retrieve **file** data structure
→˓corresponding to fd.

if (!file)
mask = POLLNVAL; // fd does not correspond to an open file.

else
mask = file->poll (file, pwait); // During the first loop pwait is not

→˓NULL.

if (mask)
{
count++; // Increases the number of responses

pwait = NULL; // Once we have at least one response POLL should not be
→˓blocking,

// so we nullify the pointer to the poll table in order to
→˓not register the poll table to more file descriptors.

}
}
pwait = NULL; // For the next loops we must not re-register to the wait queue

→˓of files.

if (count) break; // we have a result.
if (timeout) break; // it is too late.

Wait(timeout); // Put to sleep until awakening from a file or because of the
→˓time limit.

}
poll_freewait(&table); // Removes the reference to the poll table from each file's

→˓wait queue.

return count;
}

DCE implementation

As we have already seen, the poll will look like that of the kernel. Firstly we create a virtual method named Poll in the
class UnixFd. This method will do the same job that the function poll seen early in the struct file of the kernel linux
implementation. Before writing the function dce_poll which is our implementation of poll we need to create some
classes for mimic the role of the poll table and the wait queues.

4.2. DCE - POLL IMPLEMENTATION 61

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

So we add 2 sources files named wait-queue.h and wait-queue.cc in order to implements poll table and wait queue.

It is also on this occasion that I deleted all the objects used to wait which was allocated on the stack, and I replaced by
objects allocated in the heap. Concerning the dce-poll function it looks like the kernel one with some differences. The
more important difference is that the PollTable cannot be allocated on the stack so it cannot be a local variable, so the
PollTable object is allocated with a C++ new. I guess you’re wondering why the poll table cannot be allocated on the
stack, it is because of the fork implementation of DCE. Indeed, if a process makes a fork, this creates another stack
which use the same memory addresses, thus another thread of the same process cannot use an object allocated on this
stack, and when a event of a file want to wake up the poll thread it will use especially this poll table. So allocating the
Poll Table in the heap generates a side effect which is that we need to release this memory if another thread call exit
while we are within the dce-poll. So we need to register the Poll Table somewhere in a DCE data, and the DCE place
choosen is the thread struct (in file model/process.h), because each thread can be in doing a poll. Thus there is a new
field in struct thread which is:

PollTable *pollTable; // No 0 if a poll is running on this thread

There is another reason to have this field, this reason arises from the fact that a file descriptor can be shared by
multiple processes (thanks to dup fork . . .), thus when a process exit while doing a poll, we need to deregister from
the corresponding wait queues referred by the poll table.

Poll kernel implementation

Concerning the kernel implementation the dce-poll method is the same but the difference comes from the Poll method
specialized implementation of the class inherited from UnixFd and which correspond to a File Descriptor open with
the help of the Kernel Linux. For example the class LinuxSocketFd represents a socket which is opened in the kernel,
therefore the method poll of LinuxSocketFdFactory will do much work.

Now look at the interface between DCE and the kernel, in the direction DCE to kernel, we use 2 functions which are
sock_poll and sock_pollfreewait, and in the other direction there is sim_poll_event. sock_poll obviously has the
same semantics as the kernel poll. sock_poll has the following signature:

void sock_poll (struct SimSocket *s, void *ret);

where s represents the socket int the kernel and ret is a pointer to a data structure of type struct poll_table_ref:

struct poll_table_ref
{

int ret;
void *opaque;

};

This structure allows the kernel to pass a reference to the poll table DCE via the opaque field. This reference will be
used by the kernel only to warn DCE that event just happened on socket, this using the function sim_poll_event (void
*ref). In return this function modifies the value of opaque and assign it a pointer to a core structure which represents
an entry in the wait queue of the socket. This value will be used by DCE for unregister it from the wait queue using the
function sock_pollfreewait function (void * ref). The field ret is also affected in return and it contain the mask of poll
events which have already occurred on the corresponding socket. Most of the kernel code is in the file sim-socket.c it
consists of two structures, and the following functions:

62 Chapter 4. Developer’s Guide

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

NAME DESCRIPTION
sim_pollwake Function called by the kernel when the arrival of an event on the socket, if the event is expected

by DCE, the function forwards it to DCE.
sim_pollwait Function called by the kernel, its role is to register the poll table in the wait queue.
sim_sock_poll Function called by DCE, it is the interface between the DCE’s poll and the kernel’s poll.
sim_sock_pollfreewaitFunction called by DCE allows it to unregister from the wait queue.
struct
poll_table_ref

This is the same struct as that of DCE.

struct
sim_ptable_entry

This is used for the entry in the wait queue of the socket.

TODO add example , gdb breakpoint to follow the behavior in live

4.3 Python Bindings

This section describes how generate the DCE Python bindings. The intended audience are the DCE developers, not
the users willing to make simulations. People not interested in adding new public API can ignore this section, and read
the chapter DCE Python Scripts.

Waf configuration scripts generate the Python bindings in a semi-automatic way. They use PyBindGen to generate a
Python script template. This script needs to be manually updated. This intermediate script will generate a C++ source
file that can be then compiled as a shared object, installed and imported by the Python scripts.

4.3.1 Step by Step

Step 1: Api scan

In this step, Waf calls PyBindGen to analyze the DCE public reference headers, in order to generate a temporary
template Python file, that will generate a C++ file.

./waf --apiscan

Step 2: Pybindgen script update

The Pyhon script generated in the first step needs to be adjusted and renamed as ns3_module_dce.py. In particular
to reduce the coupling with the ns-3 installation the waf configuration has been simplified. For this reason you need to
paste the correct references for the ns-3 exported symbols, as for example:

module.add_class('Object', import_from_module='ns.core')
module.add_class('Node', import_from_module='ns.network')
module.add_class('NodeContainer', import_from_module='ns.network')

Step 3: C++ source code generation

ns3_module_dce.py can directly generate a C++ file for the Python module: ns3_module_dce.cpp. It
should be added to the code revision system and included in the distribution. It just requires an installed recent version
of Pybindgen.

4.3. Python Bindings 63

http://packages.python.org/PyBindGen
http://packages.python.org/PyBindGen

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

Step 4: Compilation

In the compilation phase, wscript (the Waf installation module), compiles ns3_module_dce.cpp and generate
a shared object called dce.so. This is the Python binding module.

./waf

./waf install

4.3.2 Configuration parameters

waf configuration flags:

--disable-python Don’t build Python bindings.

--apiscan Rescan the API for Python bindings. Needs working GCCXML /
pygccxml environment.

--with-pybindgen=WITH_PYBINDGEN Path to an existing Pybindgen source tree to
use.

--with-python=WITH_PYTHON Path to an existing Pyhton installation

64 Chapter 4. Developer’s Guide

http://packages.python.org/PyBindGen

CHAPTER 5

How It Works

If you are interested to know why DCE exists and how it can work, you should read this document Experimentation
Tools for Networking Research (and in particular the chapter 4) written by the principal author of DCE, Mathieu
Lacage. Also you can read the sources too.

5.1 Introduction

You know that the goal of DCE is to execute actual binaries within ns-3. More precisely a binary executed by DCE
perceives time and space of ns-3, rather than the real environment.

To do this, DCE does a job equivalent to an operating system like:

1. DCE loads in memory the code and data of executable,

2. DCE plays the role of intermediary between the executable and the environment through the systems functions
called by executables,

3. DCE manages and monitors the execution of processes and handles liberate the memory and close open files
when the stop process.

4. DCE manages the scheduling of the various virtual processes and threads.

5.2 Main classes and main data structures

5.2.1 DceManager

The DceManager is somewhat the entry point of DCE. It will create virtual processes and manages their execution.
There is an instance of DceManager which is associated to each node which need to virtualize the execution of a
process. In reality, the developer uses the classes DceManagerHelper and DceApplicationHelper.

I invite you to look at the source code dce-manager.cc and dce-manager.h and particularly the public methods Start,
Stop, Exit, Wakeup, Wait and Yield; the following private methods are also important: CreateProcess, Prepare-
DoStartProcess, DoStartProcess, AllocatePid, TaskSwitch, CleanupThread and LoadMain. The Start method is

65

http://cutebugs.net/files/thesis.pdf
http://cutebugs.net/files/thesis.pdf

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

called when starting the executable, if you look at, it begins by initializing an object of type struct Process. struct
Process is very important, it contains information about the virtual processes that DCE creates, this type is described
below. Start then also initializes a structure of type struct thread, it represents the principal thread in which the main
entry of the executable will run. Finally Start asks the TaskManager to create a new Task and to start this one using
the method DceManager::DoStartProcess as the entry point.

Class TaskManager is a major class of DCE, it is described below.

5.2.2 Process

struct process contains everything you need to describe a process, I invite you to study the source code in the file
process.h.

This structure contains references to standard objects for example a list of open files via a vector of FILE *, but it
contains also the references to objects useful to manage DCE threads, the memory allocated by the process. . .

Field openFiles represents the open file descriptors of the process, the key is the fd and the value a pointer to an object
of type DCE FileUsage. The field threads contains all the threads in the process see description below. Field loader
is a pointer to the Loader used to load the corresponding code.

The alloc field is important it is a pointer to the memory allocator used to allocate the memory used by this process, at
the end of the process it will liberate all the memory allocated so as simple and efficient.

5.2.3 Thread

struct thread represents a thread, It contains various fields including a pointer to the process to which it belongs, and
also a pointer to Task object described later.

5.2.4 Taskmanager and Task

The TaskManager manages the Tasks, ie the threads of virtualized processes by DCE. It allows you to create new
task. It controls the activity of the task by the following methods: Stop, Wakeup, Sleep and Yield. A Task possesses
a stack which contains the call stack functions. There is one instance of TaskManager per node. The implementation
of TaskManager is based on a class of type FiberManager described below.

5.2.5 FiberManager

FiberManager actually implements the creation of the execution contexts. These contexts are called fiber. Fiber-
Manager offers the following:

1. Create a context, it returns a fiber

2. Delete a fiber

3. Yield hand to another fiber

DCE provides two implementations:

1. PthreadFiberManager, which is based on the pthread library,

2. UcontextFiberManager which is based on the POSIX API functions offered by ucontext.h: makecontext,
getcontext and setcontext.

I invite you to watch the corresponding man.

66 Chapter 5. How It Works

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

5.2.6 LoaderFactory and Loader

The Loader is a very important object of DCE. A DCE Loader loads the executable code in memory of a special
way, load several times the same executable, while isolating each of the other executable. The Loader must link the
executable loaded with the 3 emulated libraries, i.e., lib C, lib pthread and lib rt. The same way the libraries used by
the executable must also be linked with the emulated libraries.

DCE offers several actually Loader:

1. CoojaLoader: it has the following characteristics: it loads into memory only a copy of the code, by cons it
duplicates data (i.e., global variables and static). For each change of context there are 2 memory copies: backup
data of the current context then restoration of context memory that will take control. Comment: it is rather
reliable, the size of the copied memory size depends on the total static and global variables, and in general there
is little, in a well-designed executable.

2. DlmLoader: Uses a specialized loader to not duplicate the code but only the data but without special operations
to do when changing context. Comment: offers the best performance in memory and cpu, but not very reliable
especially during the unloading phase.

5.3 Follow a very simple example

After theory, do a bit of practice. Follow the execution of very simple example.

You can find the used sample under the directory named myscripts/sleep. This executable used by the scenario do
only a sleep of ten seconds:

#include <unistd.h>

int main(int c, char **v)
{

sleep (10);

return 1;
}

The ns-3/DCE scenario execute tenseconds one time starting at time zero:

1 #include "ns3/core-module.h"
2 #include "ns3/dce-module.h"
3

4 using namespace ns3;
5

6 int main (int argc, char *argv[])
7 {
8 NodeContainer nodes;
9 nodes.Create (1);

10

11 DceManagerHelper dceManager;
12 dceManager.Install (nodes);
13

14 DceApplicationHelper dce;
15 ApplicationContainer apps;
16

17 dce.SetStackSize (1<<20);
18

19 dce.SetBinary ("tenseconds");

(continues on next page)

5.3. Follow a very simple example 67

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

(continued from previous page)

20 dce.ResetArguments ();
21 apps = dce.Install (nodes.Get (0));
22 apps.Start (Seconds (0.0));
23

24 Simulator::Stop (Seconds(30.0));
25 Simulator::Run ();
26 Simulator::Destroy ();
27 }

First we can launch the binary with $./build/bin_dce/tenseconds. After ~10 seconds you retrieve the
prompt.

Then we can try the DCE scenario: .. code-block:: sh

$./build/myscripts/sleep/bin/dce-sleep

This time the test is almost instantaneous, because the scenario is very simple and it uses the simulated time.

Same test by activating logs:

Listing 1: Log messages generated by dce-sleep

$ NS_LOG=DefaultSimulatorImpl ./build/myscripts/sleep/bin/dce-sleep
DefaultSimulatorImpl:DefaultSimulatorImpl(0x6928c0)
DefaultSimulatorImpl:SetScheduler(0x6928c0, ns3::MapScheduler[])
0s -1 DefaultSimulatorImpl:ScheduleWithContext(0x6928c0, 0, 0, 0x692ab0)
0s -1 DefaultSimulatorImpl:ScheduleWithContext(0x6928c0, 0, 0, 0x695220)
0s -1 DefaultSimulatorImpl:Stop(0x6928c0, 30000000000)
0s -1 DefaultSimulatorImpl:Schedule(0x6928c0, 30000000000, 0x692c10)
0s -1 DefaultSimulatorImpl:Run(0x6928c0)
0s -1 DefaultSimulatorImpl:ProcessOneEvent(): [LOGIC] handle 0
0s 0 DefaultSimulatorImpl:Schedule(0x6928c0, 0, 0x695630)
0s 0 DefaultSimulatorImpl:ProcessOneEvent(): [LOGIC] handle 0
0s 0 DefaultSimulatorImpl:ProcessOneEvent(): [LOGIC] handle 0
0s 0 DefaultSimulatorImpl:ProcessOneEvent(): [LOGIC] handle 0
0s 0 DefaultSimulatorImpl:Schedule(0x6928c0, 10000000000, 0x6954c0)
0s 0 DefaultSimulatorImpl:ProcessOneEvent(): [LOGIC] handle 10000000000
10s 0 DefaultSimulatorImpl:ProcessOneEvent(): [LOGIC] handle 10000000000
10s 0 DefaultSimulatorImpl:ProcessOneEvent(): [LOGIC] handle 30000000000
30s -1 DefaultSimulatorImpl:Stop(0x6928c0)
DefaultSimulatorImpl:Destroy(0x6928c0)
DefaultSimulatorImpl:Destroy(): [LOGIC] handle destroy 0x6928a0
DefaultSimulatorImpl:DoDispose(0x6928c0)
DefaultSimulatorImpl:~DefaultSimulatorImpl(0x6928c0)

We can see that an event occurs at 30s it is the end of the simulation corresponding to the line:

Simulator::Stop (Seconds(30.0));

We can also see that at 10s an event occurs, this is the end of our sleep(10).

Now we do the same experiment using the debugger:

Listing 2: a GNU debugger session on dce-sleep binary

$ gdb ./build/myscripts/sleep/bin/dce-sleep
(gdb) b ns3::DceManager::DoStartProcess
(gdb) b ns3::DceManager::Start

(continues on next page)

68 Chapter 5. How It Works

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

(continued from previous page)

(gdb) run
Breakpoint 4, ns3::DceManager::Start (this=0x630c50, name=..., at ../model/dce-
→˓manager.cc:403
403 NS_LOG_FUNCTION (this << name << stackSize << args.size () << envs.size ());
(gdb) bt
#0 ns3::DceManager::Start (this=0x630c50, name=.....) at ../model/dce-manager.cc:403
#1 0x00007ffff7cb5e19 in ns3::DceApplication::StartApplication (this=0x633520) at ../
→˓model/dce-application.cc:79
#2 0x00007ffff71dea6e in ns3::EventMemberImpl0::Notify (this=0x633650) at ./ns3/make-
→˓event.h:94
#3 0x00007ffff76148af in ns3::EventImpl::Invoke (this=0x633650) at ../src/core/model/
→˓event-impl.cc:45
#4 0x00007ffff76194c3 in ns3::DefaultSimulatorImpl::ProcessOneEvent (this=0x6308e0)
→˓at ../src/core/model/default-simulator-impl.cc:140
#5 0x00007ffff761986a in ns3::DefaultSimulatorImpl::Run (this=0x6308e0) at ../src/
→˓core/model/default-simulator-impl.cc:193
#6 0x00007ffff76155dd in ns3::Simulator::Run () at ../src/core/model/simulator.cc:160
#7 0x00000000004075af in main (argc=1, argv=0x7fffffffdaa8) at ../myscripts/sleep/
→˓dce-sleep.cc:25
(gdb) info thread
Id Target Id Frame

* 1 Thread 0x7ffff6600740 (LWP 7977) "dce-sleep" ns3::DceManager::Start
→˓(this=0x630c50,) at ../model/dce-manager.cc:403

You can notice that:

1. We have two breakpoints.

2. After run the first stop is in ns3::DceManager:Start.

3. At this time there is only one thread.

4. We are currently processing an event, this event was scheduled by the call apps.Start (Seconds (0.0)); of our
scenario.

Now we continue our execution:

(gdb) continue
Continuing.
[New Thread 0x7ffff65fc700 (LWP 8159)]
[Switching to Thread 0x7ffff65fc700 (LWP 8159)]

Breakpoint 3, ns3::DceManager::DoStartProcess (context=0x633d50) at ../model/dce-
→˓manager.cc:274
274 Thread *current = (Thread *)context;
(gdb) info thread

Id Target Id Frame

* 2 Thread 0x7ffff65fc700 (LWP 8159) "dce-sleep" ns3::DceManager::DoStartProcess
→˓(context=0x633d50) at ../model/dce-manager.cc:274
1 Thread 0x7ffff6600740 (LWP 7977) "dce-sleep" pthread_cond_wait@@GLIBC_2.3.2 ()

→˓at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S:162
(gdb) bt
#0 ns3::DceManager::DoStartProcess (context=0x633d50) at ../model/dce-manager.cc:274
#1 0x00007ffff7d21b90 in ns3::TaskManager::Trampoline (context=0x633bd0) at ../model/
→˓task-manager.cc:267
#2 0x00007ffff7d1da87 in ns3::PthreadFiberManager::Run (arg=0x634040) at ../model/
→˓pthread-fiber-manager.cc:402
#3 0x00000034be206ccb in start_thread (arg=0x7ffff65fc700) at pthread_create.c:301
#4 0x00000034bd6e0c2d in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:115

5.3. Follow a very simple example 69

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

You can notice that:

1. Now there is a second thread

2. Gdb break execution in ns3::DceManager::DoStartProcess in the context of the second thread

This second thread is the thread corresponding to the main thread of our hosted executable tenseconds, if you look at
ns3::DceManager::DoStartProcess you can notice that we are on the point of calling the main of tenseconds:

Listing 3: Source code that calls program’s main function

1 void
2 DceManager::DoStartProcess (void *context)
3 {
4 Thread *current = (Thread *)context;
5 int (*main)(int, char **) = PrepareDoStartProcess (current);
6 int retval = 127;
7

8 if (main)
9 {

10 StartProcessDebugHook ();
11 retval = main (current->process->originalArgc, current->process->

→˓originalArgv);
12 }
13 dce_exit (retval);
14 }

You can also see that the pointer to the main is the result of the method ns3::DceManager::PrepareDoStartProcess.
Now we can put a breakpoint before the sleep of tenseconds and follow the code of sleep:

(gdb) break tenseconds.c:5
(gdb) continue
Breakpoint 1, main (c=1, v=0x630b30) at ../myscripts/sleep/tenseconds.c:5
5 sleep (10);
(gdb) list
(gdb) step
sleep () at ../model/libc-ns3.h:193
193 DCE (sleep)
(gdb) step
dce_sleep (seconds=10) at ../model/dce.cc:226
226 Thread *current = Current ();
(gdb) list
224 unsigned int dce_sleep (unsigned int seconds)
225 {
226 Thread *current = Current ();
227 NS_LOG_FUNCTION (current << UtilsGetNodeId ());
228 NS_ASSERT (current != 0);
229 current->process->manager->Wait (Seconds (seconds));
230 return 0;
231 }
(gdb) bt
#0 dce_sleep (seconds=10) at ../model/dce.cc:226
#1 0x00007ffff62cdcb9 in sleep () at ../model/libc-ns3.h:193
#2 0x00007ffff5c36725 in main (c=1, v=0x630b30) at ../myscripts/sleep/tenseconds.c:5
#3 0x00007ffff7c9b0bb in ns3::DceManager::DoStartProcess (context=0x633d50) at ../
→˓model/dce-manager.cc:281
#4 0x00007ffff7d21b90 in ns3::TaskManager::Trampoline (context=0x633bd0) at ../model/
→˓task-manager.cc:267
#5 0x00007ffff7d1da87 in ns3::PthreadFiberManager::Run (arg=0x634040) at ../model/
→˓pthread-fiber-manager.cc:402 (continues on next page)

70 Chapter 5. How It Works

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

(continued from previous page)

#6 0x00000034be206ccb in start_thread (arg=0x7ffff65fc700) at pthread_create.c:301
#7 0x00000034bd6e0c2d in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:115
(gdb) info thread
Id Target Id Frame

* 2 Thread 0x7ffff65fc700 (LWP 15233) "dce-sleep" dce_sleep (seconds=10) at ../
→˓model/dce.cc:226
1 Thread 0x7ffff6600740 (LWP 15230) "dce-sleep" pthread_cond_wait@@GLIBC_2.3.2 ()
→˓at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S:162
(gdb)

We can notice that sleep call dce_sleep which call Wait, this Wait method is from the class TaskManager. TaskMan-
ager is a major class of DCE and we will detail it below. Basically Wait schedules and event in ns-3 event queue
(in order to be woken up after sleep time) and give the control to another Task. Now we can put a breakpoint in
ns3::DefaultSimulatorImpl::ProcessOneEvent and see the time advance up to 10s:

gdb) b ns3::DefaultSimulatorImpl::ProcessOneEvent
Breakpoint 2 at 0x7ffff7619207: file ../src/core/model/default-simulator-impl.cc,
→˓line 131.
(gdb) c
Continuing.
[Switching to Thread 0x7ffff6600740 (LWP 3942)]
Breakpoint 2, ns3::DefaultSimulatorImpl::ProcessOneEvent (this=0x6308e0) at ../src/
→˓core/model/default-simulator-impl.cc:131
warning: Source file is more recent than executable.
131 Scheduler::Event next = m_events->RemoveNext ();
(gdb) n
133 NS_ASSERT (next.key.m_ts >= m_currentTs);
(gdb) n
134 m_unscheduledEvents--;
(gdb) n
136 NS_LOG_LOGIC ("handle " << next.key.m_ts);
(gdb) n
137 m_currentTs = next.key.m_ts;
(gdb) n
138 m_currentContext = next.key.m_context;
(gdb) p m_currentTs
$1 = 10000000000
(gdb)

This next event will wake the thread 2 will therefore complete the sleep of our scenario.

In summary we saw briefly that DCE uses the events of ns-3 to schedule the execution between different tasks.

5.3. Follow a very simple example 71

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

72 Chapter 5. How It Works

CHAPTER 6

Subprojects of DCE

Below are the list of the tested applications with DCE.

• CCNx

• Quagga

• iperf

• ping/ping6

• ip (iproute2 package)

• umip (Mobilt IPv6 daemon)

• Linux kernel (from 2.6.36 to 3.14 version)

• FreeBSD kernel (10.0.0 version)

• thttpd

• torrent

6.1 CCNx

CCNx is an open source implementation of Content Centric Networking. All the C written executables are supported
and none of the Java ones. The versions tested are those between 0.4.0 and 0.6.1 included.

For more detail document, see dce-ccnx.

6.2 Quagga

Quagga is a routing software suite, providing implementations of OSPFv2, OSPFv3, RIP v1 and v2, RIPng and BGP-4

73

http://www.ccnx.org/about/
http://www.quagga.net/about.php

ns-3 Direct Code Execution (DCE) Manual, Release 1.12

for Unix platforms, particularly FreeBSD, Linux, Solaris and NetBSD. More information.

6.3 iperf

iperf from the following archive http://walami.googlecode.com/files/iperf-2.0.5.tar.gz as been tested. It is the exception
that proves the rule. That is to say that this particular example requires a change in its code. In the source file named
Thread.c at line 412 in the function named thread_rest you must add a sleep(1) in order to help DCE to
break the infinite loop.

6.4 ping/ping6

Ping from the following archive http://www.skbuff.net/iputils/iputils-s20101006.tar.bz2 is supported.

6.5 ip (iproute2 package)

6.6 umip (Mobilt IPv6 daemon)

The umip (Usagi-Patched Mobile IPv6 stack) support on DCE enables the users to reuse routing protocol implemen-
tations of Mobile IPv6. UMIP now supports Mobile IPv6 (RFC3775), Network Mobility (RFC3963), Proxy Mobile
Ipv6 (RFC5213), etc, and can be used these protocols implementation as models of network simulation.

For more information, see the latest support document.

6.7 Linux kernel (from 2.6.36 to 3.14 version)

Linux kernel support is built with a separate ‘dce-linux’ module, available on github. Many protocols implemented in
kernel space such as TCP, IPv4/IPv6, Mobile IPv6, Multipath-TCP, SCTP, DCCP, etc, are available with ns-3.

6.8 FreeBSD kernel (10.0.0 version)

FreeBSD kernel support is based on Linux kernel module of DCE. A few protocols implemented in kernel space such
as TCP, IPv4, etc, are available with ns-3.

6.9 thttpd

(TBA)

6.10 torrent

(TBA)

74 Chapter 6. Subprojects of DCE

http://ns-3-dce-quagga.readthedocs.io/en/latest/
http://walami.googlecode.com/files/iperf-2.0.5.tar.gz
http://www.skbuff.net/iputils/iputils-s20101006.tar.bz2
http://umip.org
http://ns-3-dce-umip.readthedocs.io/en/latest/
https://github.com/direct-code-execution/net-next-sim
https://github.com/direct-code-execution/freebsd-sim

CHAPTER 7

About

The creator of DCE is Mathieu Lacage. Frédéric Urbani is a past developer and maintainer.

The current maintainers and developers are Hajime Tazaki, Matthieu Coudron, Tom Henderson, and Parth Pratim
Chatterjee.

7.1 Contacts

tazaki AT sfc.wide.ad.jp
mattator AT gmail.com
tomh AT tomh.org
parth27official AT gmail.com

75

	Introduction
	Quick Start
	User’s Guide
	Developer’s Guide
	How It Works
	Subprojects of DCE
	About

